Hihocoder 1252 Kejin Game (最小割)

原创 2015年11月18日 01:21:02

2015北京现场赛的金牌题,同步赛的时候最后一小时没开出来,受到了DAG的题目背景的误导,完全没有往网络流的方向去考虑。。T_T

题意:

给定一个描述游戏技能约束关系的DAG,约束关系u->v表示获得技能V的必要条件是获得技能u。获得第i个技能需要费用P[i]。每一个约束关系可以通过花费费用Ci而将其取消。另外,可以无视一切技能约束关系,而直接以费用Di强行获得技能i。问题是求解获得技能s所需的最小费用。


很好的一个题目~第一感觉是直接在DAG上进行DP,然而很快就会发现状态无法转移= =。正解是构建成最小割的模型。那么我们应该考虑,如何把获得技能u的任一方式,表为从源点到点u的一个割。从这个方向思考的话,便可以得到以下的建图策略:

(1)将每个点i,拆成i和i',另外添加一个源点source,以及汇点sink。

(2)对于原来DAG中的边,u->v,连边u'->v,容量为DAG中对应边的费用。

(3)对于每个点u,连边source->u,容量为P[u];连边u->u',容量为D[u]。

(4)对于目标技能s,连边s'->sink,流量INF。

然后答案就是source->sink的最小割。以上的建图方式的正确性仔细想想便能明白。

借助这个题也重新复习了一遍最大流的代码= = 希望能够在4天后的上海站有裸敲最大流的能力~ (T_T感觉自己好弱~一个最大流还要对着模板写)


#define N (1<<10)
#define INFP (1<<30)
#include <bits/stdc++.h>
using namespace std;

int T,n,m,s,x,y,z,cnt;
int head[N],pre[N],gap[N],level[N],cur[N];

struct Node
{
	int v,cap,next;
	Node(){}
	Node(int v,int cap,int next):v(v),cap(cap),next(next){}
}Edge[N<<6];

void AddEdge(int u,int v,int cap)
{
	Edge[cnt++]=Node(v,cap,head[u]);
	Edge[cnt++]=Node(u,0,head[v]);
	head[u]=cnt-2,head[v]=cnt-1;
}

int ISAP(int vs,int vt,int n)
{
	int res=0;
	memset(gap,0,sizeof(gap));
	memset(pre,-1,sizeof(pre));
	memset(level,0,sizeof(level));
	for(int i=0;i<n;i++)
		cur[i]=head[i];
	pre[vs]=vs,gap[0]=n;

	for(int u=vs,aug=INFP;level[vs]<n;)
	{
		bool flag=0;
		for(int i=cur[u];i!=-1;i=Edge[i].next)
		{
			int v=Edge[i].v;
			if(Edge[i].cap && level[u]==level[v]+1)
			{
				flag=1,pre[v]=u,cur[u]=i,u=v;
				aug=min(aug,Edge[i].cap);
				break;
			}
		}
		if(!flag)
		{
			int mh=n;
			for(int i=head[u];i!=-1;i=Edge[i].next)
			{
				int v=Edge[i].v;
				if(Edge[i].cap && level[v]<mh) mh=level[v],cur[u]=i;
			}
			if(!--gap[level[u]]) break;
			gap[level[u]=mh+1]++,u=pre[u];
		}
		else if(u==vt)
		{
			for(;u!=vs;u=pre[u])
			{
				int v=pre[u];
				Edge[cur[v]].cap-=aug;
				Edge[cur[v]^1].cap+=aug;
			}
			res+=aug,aug=INFP;
		}
	}
	return res;
}

int main()
{
	for(cin>>T;T--;)
	{
		cin>>n>>m>>s;
		memset(head,-1,sizeof(head)),cnt=0;
		for(int i=0;i<m;i++)
			scanf("%d%d%d",&x,&y,&z),AddEdge(n+x,y,z);
		for(int i=1;i<=n;i++)
			scanf("%d",&x),AddEdge(0,i,x);
		for(int i=1;i<=n;i++)
			scanf("%d",&x),AddEdge(i,n+i,x);
		AddEdge(n+s,n+n+1,INFP);
		cout<<ISAP(0,n+n+1,n+n+2)<<endl;
	}
	return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU 5124 hihocoder 1249 Xiongnu's Land (2015北京区域赛A)

扫描线

hihoCoder 1233 Boxes(2015 北京网赛 G)

Boxes         搜索。状态表示:第几大的box在第几个槽中,压成一个整数。最大情况n=7即压成一个7位7进制数。复杂度7^7,我用vectorTLE,换成数组就过了。 #i...

hihocoder 1252 Kejin Game dinic网络流

#include #include #include #include using namespace std; const int N=1024; const int inf=1<<24;struc...

hihoCoder1252 2015北京区域赛 D.Kejin Game

题意:给你一个有向无环图的技能树,通常地学习某个技能需要学习全部的前置技能,并且需要一定的花费,但你可以通过氪金来消掉某个前置关系或者直接强行习得某个技能,问要学习某个特定的技能需要的最小花费; 一...

UVALive 7264 Kejin Game(最小割)

题目地址:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&...

hihocoder 1378 : 网络流二·最大流最小割定理

描述 小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么? 小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t。每一条边e(u,v)...

最大流最小割——hihoCoder 1378

题目链接: https://hihocoder.com/problemset/problem/1378 分析: 给出一个已经建立好的网络流图,这个图中的点被最小割分成两个部分S集合(包括源点)和T...
  • FeBr2
  • FeBr2
  • 2016-10-11 19:15
  • 163

HDU 3657 Game 最小割

题目:http://acm.hdu.edu.cn/showproblem.php?pid=3657题意:给定一个n*m的方格,每个格子里有一个数,现在从里面去一些数字,使这些数字的和最大,其中若有两个...

[Codeforces 808F] [二分] [最小割] Card Game

题意大概就是选一些物品,这个物品魔力值的两两之和为合数,物品等级要小于你的等级,求你最小的等级,可以选出这样的一些物品使这些物品能力值之和>=k。首先可以二分答案,然后就变成最小割的经典模型魔力值为奇...

hdu 3657 Game(最小割,最大点权独立集)

Game Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)