关闭

Hihocoder 1252 Kejin Game (最小割)

471人阅读 评论(1) 收藏 举报

2015北京现场赛的金牌题,同步赛的时候最后一小时没开出来,受到了DAG的题目背景的误导,完全没有往网络流的方向去考虑。。T_T

题意:

给定一个描述游戏技能约束关系的DAG,约束关系u->v表示获得技能V的必要条件是获得技能u。获得第i个技能需要费用P[i]。每一个约束关系可以通过花费费用Ci而将其取消。另外,可以无视一切技能约束关系,而直接以费用Di强行获得技能i。问题是求解获得技能s所需的最小费用。


很好的一个题目~第一感觉是直接在DAG上进行DP,然而很快就会发现状态无法转移= =。正解是构建成最小割的模型。那么我们应该考虑,如何把获得技能u的任一方式,表为从源点到点u的一个割。从这个方向思考的话,便可以得到以下的建图策略:

(1)将每个点i,拆成i和i',另外添加一个源点source,以及汇点sink。

(2)对于原来DAG中的边,u->v,连边u'->v,容量为DAG中对应边的费用。

(3)对于每个点u,连边source->u,容量为P[u];连边u->u',容量为D[u]。

(4)对于目标技能s,连边s'->sink,流量INF。

然后答案就是source->sink的最小割。以上的建图方式的正确性仔细想想便能明白。

借助这个题也重新复习了一遍最大流的代码= = 希望能够在4天后的上海站有裸敲最大流的能力~ (T_T感觉自己好弱~一个最大流还要对着模板写)


#define N (1<<10)
#define INFP (1<<30)
#include <bits/stdc++.h>
using namespace std;

int T,n,m,s,x,y,z,cnt;
int head[N],pre[N],gap[N],level[N],cur[N];

struct Node
{
	int v,cap,next;
	Node(){}
	Node(int v,int cap,int next):v(v),cap(cap),next(next){}
}Edge[N<<6];

void AddEdge(int u,int v,int cap)
{
	Edge[cnt++]=Node(v,cap,head[u]);
	Edge[cnt++]=Node(u,0,head[v]);
	head[u]=cnt-2,head[v]=cnt-1;
}

int ISAP(int vs,int vt,int n)
{
	int res=0;
	memset(gap,0,sizeof(gap));
	memset(pre,-1,sizeof(pre));
	memset(level,0,sizeof(level));
	for(int i=0;i<n;i++)
		cur[i]=head[i];
	pre[vs]=vs,gap[0]=n;

	for(int u=vs,aug=INFP;level[vs]<n;)
	{
		bool flag=0;
		for(int i=cur[u];i!=-1;i=Edge[i].next)
		{
			int v=Edge[i].v;
			if(Edge[i].cap && level[u]==level[v]+1)
			{
				flag=1,pre[v]=u,cur[u]=i,u=v;
				aug=min(aug,Edge[i].cap);
				break;
			}
		}
		if(!flag)
		{
			int mh=n;
			for(int i=head[u];i!=-1;i=Edge[i].next)
			{
				int v=Edge[i].v;
				if(Edge[i].cap && level[v]<mh) mh=level[v],cur[u]=i;
			}
			if(!--gap[level[u]]) break;
			gap[level[u]=mh+1]++,u=pre[u];
		}
		else if(u==vt)
		{
			for(;u!=vs;u=pre[u])
			{
				int v=pre[u];
				Edge[cur[v]].cap-=aug;
				Edge[cur[v]^1].cap+=aug;
			}
			res+=aug,aug=INFP;
		}
	}
	return res;
}

int main()
{
	for(cin>>T;T--;)
	{
		cin>>n>>m>>s;
		memset(head,-1,sizeof(head)),cnt=0;
		for(int i=0;i<m;i++)
			scanf("%d%d%d",&x,&y,&z),AddEdge(n+x,y,z);
		for(int i=1;i<=n;i++)
			scanf("%d",&x),AddEdge(0,i,x);
		for(int i=1;i<=n;i++)
			scanf("%d",&x),AddEdge(i,n+i,x);
		AddEdge(n+s,n+n+1,INFP);
		cout<<ISAP(0,n+n+1,n+n+2)<<endl;
	}
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1133次
    • 积分:41
    • 等级:
    • 排名:千里之外
    • 原创:3篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条
    文章存档
    最新评论