关闭

[HNOI2011]XOR和路径

标签: 高斯消元dp
612人阅读 评论(0) 收藏 举报
分类:

拿这题+JLOI的装备购买学了下高斯消元。

这道题的话,非常神奇一个地方在于它的状态。
单独考虑二进制的每一位,那么每一条边的权值就只有0、1之分了。
设f(x)表示从x走到n是1的概率,那么就有

f(x)=0(u,v)Ex==u{f(v)1f(v),w(u,v)=0,w(u,v)=1degree(x),x=n,xn

这是因为如果我们在x,那么我们向与x相连的每条边走的概率是相等的。
但是我们实际上并不好求从每条边走来的概率,所以如果我们的状态表示的是从1到x是1的概率的话实际上是难以转移的。

非常科学的消元法当然是列主元消元法,但是我写这道题的时候用了一些非常奇怪不过非常简单的做法。就是我们倒着消行列,每次就直接认为第i列主元就在第i行。这样的话值域当然可能爆,也可能第i列第i行的直接是0不能当主元,所以不是很科学。。不过这个东西应该非常非常难卡,数据肯定不会卡的。
代码:

#include<cstdio>
#include<iostream>
using namespace std;
#include<algorithm>
#include<cstring>
#include<cmath>
typedef double LLF;
const int N=100+5,M=10000+5;
int next[M<<1],succ[M<<1],w[M<<1],ptr[N],etot=1;
int deg[N];
void addedge(int from,int to,int wt){
    next[etot]=ptr[from],ptr[from]=etot,succ[etot]=to,w[etot++]=wt;
}
LLF eps=1e-15;
LLF mat[N][N];
int main(){
    int n,m;
    scanf("%d%d",&n,&m);
    int u,v,wt;
    while(m--){
        scanf("%d%d%d",&u,&v,&wt);
        addedge(u,v,wt);
        ++deg[u];
        if(u!=v){
            addedge(v,u,wt);
            ++deg[v];
        }
    }
    LLF ans=0;
    for(int o=1;o<=1e9;o<<=1){
        //printf("----%d---\n",o);
        memset(mat,0,sizeof(mat));
        mat[n][n]=1;
        for(int i=n;--i;){
            mat[i][i]=deg[i];
            for(int j=ptr[i];j;j=next[j])
                if(w[j]&o){
                    mat[i][n+1]+=1;
                    mat[i][succ[j]]+=1;
                }
                else mat[i][succ[j]]-=1;
        }

        for(int i=n,j;i;--i)
            for(j=i;--j;)
                if(fabs(mat[j][i])>eps){
                    LLF tmp=mat[j][i]/mat[i][i];
                    for(int k=i;k;--k)mat[j][k]-=mat[i][k]*tmp;
                    mat[j][n+1]-=mat[i][n+1]*tmp;
                }

        ans+=o*mat[1][n+1]/mat[1][1];

        //printf("ans=%f\n",(double)(mat[n][n+1]/mat[n][n]));
    }
    printf("%.3f\n",ans);
}
0
0
查看评论

bzoj2337: [HNOI2011]XOR和路径

传送门:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2337 思路:看到异或,那就按位做。 假设现在在做第i位,为了描述方便,现在的边权是val[y]&(1 设f[x]表示x到n的路径异或和为1的期望, 那么就有方程f[x]...
  • thy_asdf
  • thy_asdf
  • 2015-08-08 09:57
  • 1535

BZOJ2337 [HNOI2011]XOR和路径

题意:有一个无向图,边带权,从点1开始,每次随机选择与这个点相邻的一条边走到另一个点,直到走到点n.权值为所有走过的边的异或和(若一条边经过多次则被异或多次),求权值的期望值。 思路:将每一位拆开。那么相当于边上的权值只有0,1. 由于到达n就立即停止,我们定义f[i]表示从i到达n的期...
  • wyfcyx_forever
  • wyfcyx_forever
  • 2014-10-17 10:00
  • 1097

BZOJ 2337 HNOI2011 XOR和路径 期望DP+高斯消元

题目大意:给定一个无向连通图,从1出发,每次等概率沿着任意一条出边走到n为止,求路径上的边权的异或和的期望值 首先既然是位运算的问题我们的一般处理办法就是拆位,按位处理 对于每一位 令f[i]为从i节点出发到n的期望值 对于每条出边,如果这条边边权为1,那么f[x]+=f[y]/d[x] 否则f[x...
  • PoPoQQQ
  • PoPoQQQ
  • 2014-12-28 23:50
  • 2673

BZOJ 2337: [HNOI2011]XOR和路径|期望|高斯消元

高斯消元 按位计算 计算每一位的期望求和 被sb错误给坑了…… #include #include #include #include #include #include #include #include #include #include #include using namespace st...
  • ws_yzy
  • ws_yzy
  • 2016-01-07 14:06
  • 387

BZOJ-2337-XOR和路径

描述分析 转化为二进制按位来计算, 最后把每一位的加起来 f[i]表示i到n的期望路径长度, d[i]表示i的度 因为i的期望是由i走到的点状态转移得到的, 所以在计算概率时应该用i的度来算 如果i到j的边的权值的第 BIT 位是0, 任何数异或0都是它本身, 所以f[i] = f[j] / d[i...
  • qq_21110267
  • qq_21110267
  • 2015-03-14 17:37
  • 556

BZOJ 2337 [HNOI2011] XOR和路径

期望+高斯消元
  • SenyeLicone
  • SenyeLicone
  • 2017-01-23 23:34
  • 230

[HNOI2011]XOR和路径

拿这题+JLOI的装备购买学了下高斯消元。这道题的话,非常神奇一个地方在于它的状态。 单独考虑二进制的每一位,那么每一条边的权值就只有0、1之分了。 设f(x)表示从x走到n是1的概率,那么就有f(x)=⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪0∑(u,v)∈E∩x==u{f(v)1−f(v),w(u,v)=...
  • TA201314
  • TA201314
  • 2016-06-01 20:43
  • 612

BZOJ 2337|HNOI 2011|XOR和路径|概率期望|高斯消元

给定无向联通图,从1点等概率地向相邻点移动,求1点到N点的路径边权xor和的期望值。位运算一般拆位看。 对于每位的期望值显然有 E(u)=∑wu,v=0E(v)+∑wu,v=1[1−E(v)]di E(u)=\frac{\sum_{w_{u,v}=0}E(v)+\sum_{w_{u,v}=1}[...
  • huanghongxun
  • huanghongxun
  • 2016-04-21 15:40
  • 371

BZOJ 2337: [HNOI2011]XOR和路径

首先异或这个不是很好搞,我们可以把每个数先拆成二进制的 考虑每一位的情况,那么问题就转化为了到达节点n时当前位为1的期望 令f[i]表示从节点i到n异或为1的期望,显然f[n]=0 对于其他的点u,f[u]=sigma(f[v]/deg[u])+sigma((1-f[w])/deg[u]),其...
  • nlj1999
  • nlj1999
  • 2016-04-06 15:05
  • 240

Bzoj2337:[HNOI2011]XOR和路径

题面 bzoj Sol 设f[i]'>f[i] f[i]f[i]表示i&#x5230;n'>i到n i到ni到n的路径权值某一位为1'>1 11的期望 枚举每一位,高斯消元即可 不要问我为什么是i&am...
  • oi_Konnyaku
  • oi_Konnyaku
  • 2018-02-04 20:52
  • 40
    个人资料
    • 访问:174724次
    • 积分:3636
    • 等级:
    • 排名:第10679名
    • 原创:187篇
    • 转载:1篇
    • 译文:0篇
    • 评论:25条
    最新评论