Android SDK Version简介

我们在android工程中经常会遇见如下几个SDK Version——minSdkVersion、targetSdkVersion和maxSdkVersion。根据名字看是显而易见的含义,但是往往越显而易见,越不会被重视。知道个似是而非,大概意思就差不多。因此,我觉得有必要记下一笔,讲讲这几个属性在android里到底是什么意思。minSdkVersion指的是当前APP可以安装的系统最低版本。如...
阅读(218) 评论(0)

相似性度量

一、余弦相似度一个物品可以由一系列特征描述,这些特征构成了一个特征向量。余弦相似度就是通过两个特征向量的夹角来度量两个物品的相似程度。夹角范围是[0,π];当夹角∈[0,π/2),二者正相关,越小,正相关越厉害;当夹角=π/2,二者不相关;当夹角∈(π/2,π],二者负相关,且越大,负相关越厉害。计算公式:a = (x1,x2,…….xn),b=(y1,y2,……yn)一、皮尔逊积矩相关系数计算公...
阅读(139) 评论(0)

畅想未来

这三点,是我觉得未来应该成为的样子~一、一切皆数据数字是一个很神奇的东西,一切的物品、行为都可以被数据描述。比如一个物品我们可能会用长宽高、颜色、重量等可以反映物品属性的特征来记录。未来的一切东西都会可以被数据所描述,存储和传递。一个人,他的健康指数,如心跳,血压,年龄;他的消费习惯,如某个商品的浏览次数,购买记录;他在网上的浏览记录,他的聊天数据,他银行卡的消费水平,存款记录等等。围绕着这个人的...
阅读(124) 评论(0)

深入分析Android监听网络变化的坑

Android开发的同学都知道,在很多场景下我们需要监听网络变化,从而做一些业务逻辑比如刷新数据。于是我们会找到这样一个广播:ConnectivityManager.CONNECTIVITY_ACTION,注册一个BroadcastReceiver,添加一个ConnectivityManager.CONNECTIVITY_ACTION,就可以监听网络变化了。再看看这个action的注释:A cha...
阅读(492) 评论(0)

AsyncLayoutInflater的简单介绍和源码分析

简介我们知道setContentView()、layoutinflater.inflate()等传统的布局加载方式都是在UI线程中同步加载布局的。当layout.xml过于复杂繁重,加载就会造成UI卡顿甚至ANR。在Google最近发布的Supportv4包中,给我们提供了一个异步加载布局的帮助类:AsyncLayoutInflater。这个类可以帮助你在非UI线程中加载layout,然后将加载好...
阅读(736) 评论(0)

看到一张比较好的关于特征工程的图

...
阅读(267) 评论(0)

卡方检验原理及应用

原文链接:https://segmentfault.com/a/1190000003719712 卡方检验反应的是理论值与实际值之间的差异性。卡方值越大,表示理论与实际的差异越大...
阅读(668) 评论(0)

如何做好机器学习——个人感悟

最近一直在研究机器学习的相关内容,也在kaggle上看了不少前辈的解答思路。作为一个刚入门的小生来说,进步的空间还很大。但是我觉得有必要把我自己对机器学习的看法和认识记录一下,不论对错。 机器学习实际上就是一门与数据打交道的学科,数据在里面体现了非常重要的角色。如果要我一句话说明什么是机器学习的话,我觉得是“通过一直的数据和结论,训练一种模型出来,并根据新的数据来预测结论”。那么,如何做好机器学...
阅读(373) 评论(0)

如何在 Kaggle 首战中进入前 10%

原文请见:https://dnc1994.com/2016/04/rank-10-percent-in-first-kaggle-competition/...
阅读(484) 评论(0)

巧用接口解耦分离实现

架构对于很多初学者来讲往往都是唯恐不及的,总感觉架构对自己而言太过遥远,实际上架构对大家来说并不陌生,甚至你每天都在与之打交道,只是你习以为常没有留意而已。生活中处处是架构设计的影子,只不过在日常生活中我们不称之为架构罢了。记得在一年多以前爱哥在公司楼下的食堂发现一个有趣的现象,楼下食堂打饭是这样的,你得先去食堂售票处那够买饭票,然后拿着这张饭票排队点餐,点餐的过程是这样的,先会有一个大叔问你吃什...
阅读(1086) 评论(0)

NumPy的详细教程

原文请见:http://blog.csdn.net/lsjseu/article/details/20359201?utm_source=tuicool&utm_medium=referral...
阅读(194) 评论(0)

数据挖掘比赛通用步骤

中文版:http://mp.weixin.qq.com/s?__biz=MzI3NTA0MzM1OQ==&mid=2651615325&idx=1&sn=d16a1f8ba5d4164606efc3a0fa416be2&scene=23&srcid=08139bhv2hyZYhdFZi1UBy6N#rd 英文版:http://blog.kaggle.com/2016/07/21/approach...
阅读(525) 评论(0)

基于sklearn 的one hot encoding

1.one hot编码的由来 在实际的应用场景中,有非常多的特征不是连续的数值变量,而是某一些离散的类别。比如在广告系统中,用户的性别,用户的地址,用户的兴趣爱好等等一系列特征,都是一些分类值。这些特征一般都无法直接应用在需要进行数值型计算的算法里,比如CTR预估中最常用的LR。那针对这种情况最简单的处理方式是将不同的类别映射为一个整数,比如男性是0号特征,女性为1号特征。这种方式最大的优点...
阅读(2665) 评论(1)

朴素贝叶斯分类算法

http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html...
阅读(239) 评论(0)

K-Means 算法

http://coolshell.cn/articles/7779.html...
阅读(238) 评论(0)
146条 共10页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:355647次
    • 积分:3397
    • 等级:
    • 排名:第9562名
    • 原创:68篇
    • 转载:69篇
    • 译文:6篇
    • 评论:80条
    最新评论