关闭

树和二叉树

389人阅读 评论(0) 收藏 举报

1.树的定义

   树是n(n>=0)个结点的有限集.在任意一颗非空树中:(1)有且只有一个根节点;(2)当n>1时,其余结点可分为m(m>0)的有限集。

 

基本术语:

 

结点的度:结点拥有的子树个数

 

叶子:度为0的节点

 

孩子:结点子树的根节点

 

双亲:孩子的根结点.

 

兄弟:同一个双亲的孩子.

 

结点的层次:根为第一层,根的孩子为第二层,如此类推

 

堂兄弟:在同一层次的结点

 

树的深度:结点层次的最大值。

 

2.森林的定义

   深林是由n(n>=0)课互不相交的树的集合.

 

3.二叉树的定义

  每个结点子树个数的最大值为2.

 

二叉树的性质:

 (1 )在第i层上至多有2的i-1次方个结点.

  ( 2 )  树的结点个数的最大值为2的i次方-1

 (3)叶子的个数=度为2的节点+1

   (4) 完全二叉树:树的结点个数为2的i次方-1

 (4)具有N个结点的完全二叉树的深度为 log2n+1

 

4.先序遍历二叉树:

  (1)访问根节点

  (2)先序遍历左子树

  (3)先序遍历右子树

 

5.中序遍历二叉树:

  (1)中序遍历左子树

  (2)访问根节点  

  (3)中序遍历右子树

 

6.后序遍历二叉树

  (1)后序遍历左子树  

  (2)后序遍历右子树  

  (3) 访问根节点

 

7.最优二叉树(哈夫曼树)

定义:假设有n个权值(w1,w2,w3,..,wn),试构造一颗具有n个叶子结点的二叉树,每个叶子结点的带权为wi,则其中路径最长的二叉树称为最优二叉树或哈夫曼树.

算法: (1)假设具有n个权值(w1,w2,w3,..,wn)构造n课二叉树的集合F={T1,T2,...,TN},Ti只有一个带权为wi的根节点,左右子树为空。

           (2)在F中选取两个权值最小的树最为左右子树构造一颗新的二叉树,且左右子树权值的和作为该二叉树的根节点的权值.

             (3) 在F中删除这两棵树,并且把新构造的二叉树加入到加入F中.

重复步骤(2)(3),直到F只有一棵树.

 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:159423次
    • 积分:1823
    • 等级:
    • 排名:千里之外
    • 原创:42篇
    • 转载:34篇
    • 译文:0篇
    • 评论:2条
    最新评论