Elastic 中国社区官方博客

关于 Elastic Stack 及相关的任何技术

  • 博客(4)
  • 资源 (9)
  • 收藏
  • 关注

原创 利用snapcraft-gui工具来简化我们的snap开发

在这篇文章中,我们将介绍一个崭新的工具snapcraft-gui来帮我们开发snap应用.对于一些刚开始开发snap应用的开发者来说,很多的命令及格式对它们来说非常不熟悉.我们可以利用现有的一个含有GUI的Qt应用来帮助我们来创建一个崭新的应用或用来管理我们已经创建好的一个应用.我们再也不需要那些繁琐的命令来帮我们了.我们只需要做的就是按下工具里面的按钮或在文本输入框中直接编辑我们的snapcraft.yaml项目文件即可.

2016-09-19 10:15:54 3200

原创 如何把魅族Pro 5刷成Ubuntu手机

对于一下Ubuntu的粉丝来说,能够把魅族的手机刷成Ubuntu手机是一件非常幸运的事.我找到了一篇这样的文章.不过大家需要小心.我对下面这个链接的内容没有做任何的验证.希望大家本着自己对自己负责的原则.我们对里面的内容,不做任何的负责.

2016-09-12 14:02:55 7796 1

原创 LeMaker Guitar Snappy Ubuntu安装体验

我们知道LeMaker的版子是支持Ubuntu Core的.具体的信息可以在地址找到.在这篇文章中,我们介绍如何安装Ubuntu Core到LeMaker的板子中去.

2016-09-12 07:21:00 1574

原创 Ubuntu Core 介绍(视频)

在这个视频里,我们介绍了什么是Ubuntu Core及Ubuntu Core的安全机制.我们也深入介绍了用于打包snap的snapcraft工具及其应用商店.

2016-09-01 10:37:22 2939

03-Elasticsearch跨境电商搜索优化实践 欧阳楚才 杭州 20250419

内容概要:本文由欧阳楚才分享,主要介绍了Elasticsearch在跨境电商搜索优化中的实践。文章首先指出跨境电商搜索面临的问题,如搜索词意图丰富、分词准确性、搜索关键词多义等,随后详细阐述了搜索业务架构,包括意图识别、类目预测、实体识别、同义词扩展、分词处理、尺寸识别、停用词过滤、词干提取等方面的技术细节。接着,文章探讨了搜索召回和排序机制,强调了通过字段加权计算相关性评分和点击率预测CTR模型来优化搜索结果的重要性。最后,还涉及了性能压测、商品属性字段聚合优化以及数据埋点等内容,旨在提升搜索服务的整体性能和用户体验。; 适合人群:从事跨境电商、搜索引擎优化、Elasticsearch技术应用的相关从业人员,尤其是有一定Elasticsearch基础的研发人员和技术管理者。; 使用场景及目标:①理解和解决跨境电商搜索中的常见问题,如搜索词意图识别、多语种分词、关键词多义性等;②掌握通过类目预测、实体识别、同义词扩展等方法提高搜索召回率和准确性的技术手段;③学习如何通过性能压测、数据埋点等手段优化搜索服务的性能和用户体验。; 其他说明:本文提供了丰富的实际案例和技术细节,建议读者结合自身业务场景进行实践,并参考文中提供的具体配置和优化方法,不断调整和改进搜索系统。

2025-04-19

01-AI 驱动 - 搜索的未来 刘晓国 杭州 20250419

1)为什么需要向量搜索? 2)RAG 是什么? 3)Elastic 在向量搜索上的最新进展 4)案例分析

2025-04-19

02-阿里云Elasticsearch向量引擎百亿级数据优化实践 魏子珺 杭州 20250419

深度解析阿里云 Elasticsearch 向量引擎从8.0到8.x最新版本的技术跃迁,揭秘 Elasticsearch 向量引擎如何处理百亿级向量数据。分享向量引擎与文本搜索、AI 模型的无缝整合方案,探讨如何通过混合检索能力优化 RAG(检索增强生成)、Deep Search 等企业级场景。

2025-04-19

04-Higress x Elasticsearch构建更智能的AI网关 程治玮 20250419

介绍 Higress AI 网关在推理服务场景下提供的多模型适配、故障切换、多租户管理、Token 限流与内容安全等核心能力,并深度集成 Elasticsearch 实现语义化缓存、RAG 搜索和可观测等高级功能。

2025-04-19

00-Elastic Pioneer-项目

内容概要:Elastic China Pioneer Program(先锋者计划)是Elastic中国发起的大使招募计划,旨在汇聚生态伙伴、用户及开发者力量,共同推广Elastic搜索技术。该计划明确了Pioneer的使命为传播Elastic技术魅力、分享应用心得,助力Elastic在中国市场的发展。Pioneer可通过发表演讲、撰写文章、录制视频、GitHub代码贡献、提供解决方案等方式获取积分,不同形式的贡献对应不同分值。活动设有严格的审核机制,确保公平公正,参与者可凭作品质量获得相应积分,有广泛影响力的贡献还能得到额外奖励。此外,该计划还设立了月度和年度榜单机制,月度榜单每月评选一次,年度榜单前三名可获直通Elastic ON新加坡站等丰厚奖励,所有奖励均与积分挂钩,鼓励持续贡献。 适合人群:热爱Elastic技术,愿意为其发声的生态伙伴、广大用户及社区开发者。 使用场景及目标:①通过多种方式宣传推广Elastic技术,扩大其在中国市场的影响力;②激励更多人参与到Elastic的技术生态建设中来,推动Elastic技术的发展。 其他说明:活动期间,Elastic官方有权对提交内容进行二次加工、修改、传播,优秀内容将通过官方渠道推广分享。

2025-04-19

Elasticsearch 8.17 Logsdb:企业降本增效利器 程地华 线上 20250416

内容概要:本文介绍了Elasticsearch 8.17 LogsDB作为企业降本增效的利器,主要针对传统日志存储面临的高昂成本和低效查询性能的问题。Elasticsearch 8.17 LogsDB通过多种优化技术,如合成源优化、压缩算法优化、索引排序优化、块编解码器优化、压缩和分段合并优化,显著降低了日志数据的存储需求,提升了查询效率。具体而言,合成源优化去除了不必要的行存,压缩算法优化实现了快速无损压缩,索引排序优化提高了存储效率,块编解码器优化针对不同字段提供不同的编码策略,压缩优化了词典,分段合并优化则通过删除冗余信息节省空间。性能对比显示,LogsDB在系统日志、应用程序日志和审计日志三种类型的日志存储优化效果显著。应用场景包括大规模日志存储、企业级日志管理和实时日志监控与分析。 适合人群:从事日志管理和数据分析的技术人员,尤其是关注日志存储成本和查询性能的企业IT管理者和技术团队。 使用场景及目标:①大规模日志存储:显著减少存储空间,降低存储成本;②企业级日志管理:提高存储效率,优化查询性能,简化管理流程;③实时日志监控与分析:高效处理和查询海量日志数据,快速发现和解决问题。 其他说明:本文详细介绍了如何创建索引生命周期、索引模板、数据流以及配置写入等具体操作步骤,为企业提供了完整的实施指南。通过这些优化措施,企业可以在整个索引生命周期中持续受益,进一步降低总拥有成本。

2025-04-17

04 - 腾讯云 ES AI 搜索优化实践 - 刘忠奇 武汉 20250329

内容概要:本文详细介绍了腾讯云Elasticsearch(ES)在AI搜索优化方面的实践成果。首先探讨了一站式RAG(检索增强生成)架构的应用案例,如微信读书‘AI问书’和敦煌数字藏经阁,展示了其在智能检索、问答系统等方面的能力。接着阐述了向量裁剪技术,通过多种索引方式(无向量索引、Flat向量索引、HNSW向量索引等)显著降低了存储成本,最高可达90%。最后介绍了多算法融合排序框架,包括rank_fusion、score_fusion和rerank_fusion三种方法,提升了搜索结果的准确性和召回率。此外,还涉及了嵌入推理、对话推理等功能模块,进一步增强了系统的灵活性和实用性。 适合人群:从事搜索引擎开发的技术人员,尤其是对Elasticsearch及其AI增强功能感兴趣的研究者和从业者。 使用场景及目标:①希望通过RAG架构实现高效智能检索和问答系统的开发人员;②需要降低向量存储成本的数据科学家和技术经理;③希望提高搜索结果质量和用户体验的产品经理和运营人员。 其他说明:文中提到的具体技术细节和应用场景有助于读者深入了解腾讯云ES在AI搜索领域的最新进展和技术优势。

2025-03-31

02 - ES 在绿盟企业安全平台的应用实践 - 陆攀 武汉 20250329

内容概要:本文详细介绍了Elasticsearch(ES)在绿盟企业安全平台中的大规模应用及其优化路径。首先概述了安全大数据分析的典型场景和所面临的技术挑战,如PB级别的数据量、Ad-hoc查询性能、集群稳定性和运维成本等问题。接着阐述了ES集群的具体应用场景,包括日志查询、仪表盘展示和事件告警等功能模块。针对这些问题,文中提出了多项优化措施,如多实例部署、角色分离、master节点升级、_id移除到堆外、引入混合存储等方法,有效提升了系统的稳定性和性能。最后还讨论了写入性能方面的改进,如避免多盘陷阱、采用本地写入方式、实施预判引擎以及调整动态mapping设置等。 适合人群:从事信息安全领域的技术人员,尤其是负责大型分布式系统架构设计和技术选型的专业人士。 使用场景及目标:适用于需要处理海量日志数据的企业级安全平台建设,旨在提高数据分析效率、增强系统可靠性和降低运营维护难度。 其他说明:本文不仅提供了理论指导,还分享了许多实际案例和具体实施方案,对于希望深入了解ES集群管理和调优的读者来说非常有价值。

2025-03-31

01 - AI 驱动 - 搜索的未来 -刘晓国 武汉 20250329

内容概要:本文由Elastic中国社区首席布道师刘晓国主讲,探讨了AI驱动的搜索技术的发展方向,特别是Elasticsearch在向量搜索和语义搜索方面的创新。文章详细介绍了向量搜索的基本概念、实现方法以及具体应用场景,如图片相似度搜索、混合搜索、语义搜索等。此外,还讨论了Elasticsearch在硬件加速、模型管理、推理API等方面的最新进展,以及如何通过Retrieval Augmented Generation (RAG) 技术提升搜索质量和安全性。 适合人群:对AI驱动的搜索技术感兴趣的开发者、数据科学家、企业IT决策者。 使用场景及目标:适用于需要高效、精准搜索的企业级应用,尤其是涉及大规模非结构化数据处理的场景。目标是帮助用户更好地理解和应用最新的搜索技术,提升业务效率和用户体验。 其他说明:文中提供了丰富的技术细节和实例,包括向量相似度计算、模型训练与部署、搜索架构优化等方面的内容。同时,还提到了Elasticsearch与其他AI工具和服务的集成,如OpenAI的CLIP模型、HuggingFace等。

2025-03-31

05 -Elasticsearch 存算分离架构在小米的应用实践 - 周明裕 郑钧元 武汉 20250329

介绍了 ElasticSearch 服务存算分离架构在小米的技术演进过程和实现思路,日志场景可实现单集群 50% 成本优化,提升整体技术性价比

2025-03-31

03 - Agentic RAG 构建之路 - 李捷 武汉 20250329

内容概要:本文详细介绍了Elasticsearch(ES)作为构建Agentic RAG(检索增强生成)系统的理想引擎的原因。首先探讨了传统RAG系统的局限性,然后重点阐述了ES如何通过其强大的查询规划、工具使用、动态查询规划以及数据超融合等功能克服这些问题。文中还展示了具体的案例研究,如财务风险报告、生产线良品率分析、市场销售情况评估等,强调了ES在处理复杂查询、多源数据融合和实时数据分析方面的卓越表现。此外,文章讨论了ES提供的多种查询语言和支持的广泛功能,如多模态嵌入、GPU加速、自动分块策略等,进一步证明了它在构建高效、灵活的Agentic RAG系统中的独特地位。 适合人群:对构建高级检索增强生成系统感兴趣的开发者和技术决策者,尤其是那些希望利用Elasticsearch提升数据处理能力和智能化水平的专业人士。 使用场景及目标:适用于需要处理大量异构数据的企业,旨在提高数据检索效率、增强分析能力、优化业务流程。具体应用场景包括但不限于财务风险管理、生产质量监控、市场营销分析等。 其他说明:文章不仅深入剖析了技术细节,还提供了实际操作指南和最佳实践建议,帮助读者更好地理解和应用

2025-03-31

02-GraphRAG 和 Elasticseach 8 的创新实践 - 徐胜 上海 20250222

主要分享结合 Elasticsearch 8 的最新特性和微软的最新技术 GraphRAG,来实现垂域知识库的智能体知识问答的方法和技术案例。Elasticsearch 8 里面的混合检索和多路召回技术,和知识图谱完美结合,实现了更优秀的问答效果。

2025-03-03

01-AI 驱动 - 搜索的未来 - 刘晓国 上海 20250222

内容概要:本文探讨了AI驱动的未来搜索技术,特别是通过Elasticsearch实现的向量搜索和语义搜索。首先介绍了为何需要向量搜索及其基本概念,随后深入讲解了Elasticsearch中的向量搜索实现细节、向量相似度测量方法,以及如何整合图像和文本搜索。接着,描述了向量和经典搜索混合的方法,强调了RAG(检索增强生成)的作用。最后,文章讨论了Elasticsearch在硬件加速方面的进步及未来的发展方向,如稀疏向量搜索和学习排序等新技术的应用。 适合人群:熟悉搜索引擎和机器学习的基础知识的技术爱好者和专业工程师。 使用场景及目标:帮助开发者理解和掌握最新的AI驱动搜索技术,包括搭建高效能的语义和向量搜索系统,以及优化搜索结果的相关性和速度。同时,探索将这些先进技术应用于实际项目中解决具体业务问题的可能性。 其他说明:文中提供了许多具体的示例,如基于变压器模型的文字向量表示,图片相似度查找实例,并展示了使用Elastic Stack实现复杂混合搜索的实际操作。还涉及到一些高级特性,如KNN查询、ELSER模型训练、以及Retriever API的设计原理。

2025-03-03

04-Elasticsearch 在 AI 驱动下的检索新特性 - 槐新 上海 20250222

内容概要:本文详细介绍了阿里云 Elasticsearch 在 AI 技术推动下所发展的新型搜索能力。涵盖了语义搜索、多模态搜索、RAG(检索增强生成)、AI 助理等方面的新特性和技术进步。特别是在向量搜索方面,阿里云 ES 向量增强版能够高效处理结构化和非结构化数据,将其转化为向量形式,极大提升了搜索效率和精度。此外,还探讨了性能瓶颈及解决方法,以及弹性架构、数据安全性等重要特点,展现了该产品的高性能、低成本和技术灵活性。 适合人群:对于希望深入了解现代搜索技术和向量索引的技术开发者、工程师、研究学者及有兴趣了解前沿科技的应用程序管理员。 使用场景及目标:适用于需要处理大量文本、图像、音频视频等多媒体资料的企业和个人用户。旨在提高搜索系统的智能化水平,帮助企业更快更准地获取所需信息,并优化用户体验。例如,在客服、电商、医疗等领域实施多模态检索和服务机器人等功能,可显著增强业务竞争力。 其他说明:文中提到多个具体案例和技术细节,如性能测试、硬件加速指令的应用、模型量化的优势等,强调了技术的实际应用价值和发展趋势。同时展示了与第三方平台的良好协作,提供了丰富的接口和支持,方便用户的集成与

2025-03-03

03-基于 ES 与 LLM 技术构建 B站大数据运维智能体实践 - 张勋祥 上海 20250222

内容概要:本文由哔哩哔哩资深开发工程师张勋祥讲解了基于Elasticsearch(ES)和大型语言模型(LLM)技术,为解决B站庞大的运维挑战所采取的策略。首先,介绍了当前面临的业务现状,即大量问题咨询以及多样化计算引擎带来的复杂运维问题,这些问题使得自动化运维变得尤为迫切。其次,在详细的场景分析基础上提出并实施了一套智能运维系统。该系统依托于私域知识库来解答咨询和支持故障诊断等功能,涵盖Flink、Spark等多个主流组件,显著提升了处理效率与准确性。此外,针对关键的技术难题如查询改写优化等问题,文中分享了一系列有效的解决手段。最后展示了具体应用场景,如对Flink的作业断流现象进行分析。同时对未来发展规划进行了探讨,强调将继续推进运维智能化水平。 适用人群:适用于有兴趣于大数据架构下智能运维解决方案的研发人员和技术经理,特别是从事Flink、Spark等领域工作的人群。 使用场景及目标:本研究旨在为面临大规模分布式系统的团队提供有价值的见解和技术指导,帮助他们更好地理解和应用智能运维方法论来应对复杂场景中的各类运维挑战。 其他说明:文章提供了丰富的图表及案例分析,便于读者直观地掌握

2025-03-03

03-Elasticsearch 在 AI 检索与 Serverless 模式成本优化的新特性 王亚宁 北京 20241214

本次议题将深入探讨 Elasticsearch 在 AI 检索和 Serverless 模式方面的最新进展,重点介绍如何利用这些新特性提升检索体验、快速搭建企业级 RAG 服务,以及在日志场景如何通过 Serverless 模式实现显著的成本优化和性能提升。

2024-12-17

01-AI 驱动 - 搜索的未来 刘晓国 北京 20241214

内容概要:本文由Elastic中国社区首席布道师刘晓国在北京2024年12月14日的演讲内容整理而成,重点介绍了AI驱动的Elasticsearch向量搜索与语义搜索技术。文章首先探讨了向量搜索的需求背景,包括经典搜索的局限性和向量搜索的优势。随后,详细讲解了向量相似度的基础知识,如稀疏向量和密集向量,以及Elasticsearch如何实现向量搜索。文章还涵盖了Retrievers的使用方法,以及如何在Elasticsearch中使用第三方嵌入模型,如OpenAI的CLIP模型。此外,还介绍了Elasticsearch向量引擎的最新进展,包括硬件加速、向量量化和并发查询改进等方面。最后,讨论了RAG(检索增强生成)的架构及其在生成式人工智能中的应用,特别是如何结合私有数据和大型语言模型(LLM)来解决特定领域的问题。 适合人群:大数据处理、搜索引擎和自然语言处理方向的工程师及研究者。 使用场景及目标:① 了解和掌握Elasticsearch向量搜索和语义搜索的实现方法和技术细节;② 探索如何在企业级应用中集成和使用这些技术;③ 理解RAG架构在生成式人工智能中的应用。 阅读建议:本文内容较为深入,涉及较多的技术细节和实际操作,建议读者在阅读过程中配合官方文档和示例代码,以便更好地理解和实践相关技术。

2024-12-16

04 - 降本增效的利器,认识一个不同的 Elastic 顾鹏飞 北京 20241214

内容概要:本文介绍了Elastic作为一个领先的AI搜索引擎公司,其全球布局及在中国区的业务生态。强调了Elastic解决方案帮助企业从全量规模化的数据中快速获取价值,提升效率,降低成本。文中详细阐述了Elastic三大核心方案(可观测性、安全和搜索)的具体功能及其如何帮助企业构建灵活的解决方案。同时,文档还介绍了Elastic的两项关键技术——跨集群复制(CCR)和可搜索快照(searchable snapshot),这两项技术大大提升了企业在混合云环境下的容灾能力和存储成本的优化。 适合人群:对Elastic及其技术感兴趣的企业决策者、IT技术专家及数据科学家。 使用场景及目标:帮助企业利用Elastic的技术方案提升数据处理和分析能力,优化IT基础设施,降低成本,提高运营效率,更好地应对复杂多变的数据安全和性能需求。 阅读建议:本文详细介绍了Elastic的各项技术和实际应用案例,读者可以通过具体案例深入了解Elastic的技术优势和实施效果。

2024-12-16

02-Kibana 构建高级可视化 包春喜 北京 20241214

内容概要:本文详细介绍了Kibana在构建高级可视化中的应用,涵盖Elastic Geo类型(geo_point和geo_shape)的定义和使用方法,以及Elastic Maps的介绍。此外,文章还详细讲解了Vega的声明式语法及其在Kibana中的应用场景,帮助读者了解如何通过编写Vega语句实现复杂的自定义可视化。 适合人群:熟悉Kibana和Elasticsearch的基础操作,希望深入了解地理空间数据可视化和自定义图表的技术人员。 使用场景及目标:①在Elasticsearch中定义和使用geo_point和geo_shape类型;②利用Elastic Maps进行地理空间数据的分析和可视化;③通过Vega创建复杂的自定义图表,满足特定的可视化需求。 其他说明:文章提供了详细的示例代码和实际应用案例,帮助读者更好地理解和应用Kibana的高级可视化功能。

2024-12-16

02-Elasticsearch 8.x 向量搜索使用详解 杭州 1.6 2024

内容概要:本文详细介绍了 Elasticsearch 8.x 版本中的向量搜索技术和优化方法。首先概述了传统暴力搜索和HNSW & KNN的对比,强调了HNSW在大数据量下的性能优势。接着讨论了向量搜索在具体应用中的多种操作,如多个kNN字段的向量搜索、聚合查询、滤波器在近似kNN搜索中的重要性和效果。此外,还涉及了使用 RRFRanking 算法对混合搜索引擎的结果进行排序,以及使用第三方机器学习模型进行语义搜索的方法和技术细节。最后,提到了Elastic训练的稀疏召回模型ELSER及其优势。 适合人群:Elasticsearch 开发者,数据科学家,搜索系统架构师。 使用场景及目标:①优化向量搜索性能,特别是在大规模索引上的查询速度;②理解并向量化搜索引入更多高级功能,如语义搜索和混合评分机制。 其他说明:文中提供了多个实践案例和优化技巧,有助于读者快速掌握 Elasticsearch 在复杂搜索场景中的应用。

2024-12-10

02-让成本更极致,腾讯云ES serverless一站式日志分析介绍-张小伟 成都 20250906

内容概要:本文介绍了腾讯云ES Serverless一站式日志分析服务的设计理念、产品功能、底层能力及最佳实践。该服务通过存算分离、自动弹性伸缩、完全免运维等核心技术,实现按需使用、按量付费的极致成本控制,支持日志分析、实时搜索、安全分析等场景。平台集成自治索引、智能链路调度和故障自愈能力,提供端到端SLA保障,兼容开源ES API和ELK生态,助力用户快速构建稳定可靠的一站式日志分析系统。; 适合人群:具备一定云计算和日志分析基础,从事运维、开发或架构设计工作1-3年的技术人员;关注成本优化与系统稳定性的企业技术决策者。; 使用场景及目标:①应对业务流量波峰波谷明显的日志场景,实现零运维下的自动弹性伸缩;②简化ELK链路部署,降低自建集群的运维复杂度与资源浪费;③提升查询性能与写入稳定性,满足高并发日志处理需求; 阅读建议:此资源适合结合实际日志分析场景进行对照学习,重点关注Serverless架构如何解决传统ES集群的运维难题,并理解其在成本、性能、易用性之间的平衡设计。

2025-09-08

01-AI 驱动 - 搜索的未来 刘晓国 成都 20250906

内容概要:本文深入探讨了AI驱动下搜索技术的未来发展,重点介绍了向量搜索的核心原理及其在Elasticsearch中的实现方式。内容涵盖向量搜索的基础知识、语义搜索、混合搜索(Hybrid Search)、检索增强生成(RAG)等关键技术,详细讲解了稠密向量与稀疏向量的处理、嵌入模型的应用、kNN近似最近邻搜索、倒数排序融合(RRF)、学习排序(LTR)以及语义重排序等机制。同时展示了如何利用Elasticsearch实现图像相似性搜索、自动分块的semantic_text字段、多阶段检索器(Retrievers)和端到端RAG系统构建,强调了Elasticsearch在向量数据库能力上的持续优化与硬件加速进展。; 适合人群:具备一定搜索或大数据技术基础,从事搜索系统、推荐系统、AI应用开发的相关技术人员,尤其是对语义搜索、向量检索、RAG架构感兴趣的工程师和架构师;工作年限建议1-5年; 使用场景及目标:①理解向量搜索与传统关键词搜索的融合机制;②掌握在Elasticsearch中实现语义搜索、图像相似性搜索与RAG系统的完整流程;③优化搜索相关性排序,提升生成式AI应用中答案的准确性和上下文相关性; 阅读建议:建议结合Elastic官方文档与演示环境(如eden.elastic.dev)进行实践操作,重点关注模型部署、inference pipeline配置、kNN与RRF检索策略的调优,并深入理解向量索引的存储与性能优化机制。

2025-09-08

03-Agentic RAG 构建之路 李捷 成都 20250906

内容概要:本文深入探讨了从传统RAG向Agentic RAG演进的技术路径与核心能力需求,提出Agentic RAG应具备规划、记忆、执行与反思能力,形成类“智能大脑”的架构。文章系统阐述了构建Agentic RAG所需的四大关键能力:全域数据融合能力,实现知识、业务、运营与安全数据的统一对话;深度查询与分析能力,支持统计分析、数据挖掘与复杂查询语言;LLM原生友好设计,提供可被大模型理解的工具集与声明式工作流语言;企业级可靠性与安全性,涵盖端到端可观测性与全面的LLM安全防护。并以Elasticsearch为例,展示了其如何通过Search AI平台整合搜索、分析、向量处理与安全能力,支撑Agentic RAG的构建,实现业务价值提升。; 适合人群:具备一定AI与系统架构知识的企业技术决策者、AI平台开发者、搜索与推荐系统工程师,以及关注RAG技术演进与落地的中高级研发人员。; 使用场景及目标:①指导企业构建具备多步推理、动态规划与跨源协作能力的下一代RAG系统;②评估与选型支持Agentic RAG的底层引擎平台,重点考察数据融合、分析能力、LLM友好性与安全性;③理解Elasticsearch等一体化平台如何整合向量搜索、ES|QL分析、MCP工具调用与可观测性,实现从简单问答到智能决策的跃迁。; 阅读建议:此资源以架构演进和平台能力为核心,建议结合实际业务场景,重点关注四大能力的落地要求与对比分析,理解“一站式AI平台”相较于单点向量数据库的优势,并参考Elastic的技术实现路径进行系统设计与技术选型。

2025-09-08

01-ES AI Assistant集成 DeepSeek-Qwen3,搭建智能运维助手 - 槐新 线上 20250903

内容概要:本文介绍了如何通过集成DeepSeek和Qwen3大语言模型,基于Elasticsearch构建智能运维助手AI Assistant。重点阐述了Agentic RAG(检索增强生成)技术相较于传统RAG的优势,包括多轮交互、动态决策、多源数据协同和工具调用能力,提升复杂任务处理效率。结合Elasticsearch的向量检索、文本搜索与机器学习能力,AI Assistant可实现自然语言驱动的集群诊断、查询语句生成、可视化分析及运维建议,显著降低技术门槛。文章还提供了从服务开通到Connector配置的完整操作流程,并通过多个场景演示了其在集群运维、日志分析和DSL生成中的实际应用。; 适合人群:具备一定Elasticsearch使用经验的运维工程师、搜索开发人员及对AI智能运维感兴趣的中高级技术人员;熟悉大模型应用与RAG技术的技术决策者或架构师。; 使用场景及目标:①利用自然语言实现Elasticsearch集群状态诊断与优化建议;②自动生成DSL查询语句并解释执行结果;③基于日志和业务数据进行智能分析与可视化图表生成;④提升运维效率,实现异常检测、根因分析与自动化响应。; 阅读建议:建议结合阿里云Elasticsearch 8.15及以上版本实践,按照文档步骤配置Connector并进行交互测试,重点关注Agentic RAG在真实运维场景中的动态规划与多工具协同能力,同时可拓展至安全分析与业务洞察领域。

2025-09-03

01-ElasticsearchCCR详解 线上 刘琪 20250820

本次直播,我们将深入浅出,从 Elasticsearch CCR(跨集群复制)功能的底层原理到实际操作,带你全面掌握这一运维利器!无论你是运维新手还是资深专家,都能从中收获实用技巧,轻松应对高可用、高可靠的业务场景! - 深度解析:揭秘 CCR 核心机制,透彻理解数据复制全流程 - 实战演练:从零到精通,现场演示配置与优化技巧 - 场景方案:两地三中心高可用架构的最佳实践 - 互动答疑:直击数据同步与指标汇总痛点,实时解答你的疑问

2025-08-21

01-基于Elastic地理位置检索-搜索附近 j九川 线上 20250806

内容概要:本文详细介绍了基于Elasticsearch的地理位置检索技术,特别是“搜索附近”的应用场景。文章首先介绍了讲师背景,包括丰富的行业经验和多个知名平台的认证。接着阐述了地理位置检索在实际生活中的多种应用,如地理围栏、社交APP的“附近的人”、疫情追踪、物流追踪等。随后对比了不同技术方案(MySQL/PostgreSQL、Redis GEO、Elasticsearch、MongoDB、PostGIS)在查询性能、扩展性、功能性和适用数据量方面的优劣,强调了Elasticsearch在复杂搜索和地理信息处理上的优势。最后深入讲解了Elasticsearch支持的地理位置检索类型,包括`geo_point`、`geo_shape`和`geo_polygon`,并展示了具体的使用案例和技术细节。 适合人群:具备一定编程基础,尤其是对地理信息系统和Elasticsearch感兴趣的开发人员和技术爱好者。 使用场景及目标:①实现基于地理位置的搜索功能,如“搜索附近的XX”(医院、外卖、学校、商场等);②构建地理围栏,监控用户是否进入特定区域;③进行实时轨迹分析和安全预警;④优化LBS(基于位置的服务)系统的性能和扩展性。 阅读建议:本文不仅提供了Elasticsearch地理位置检索的技术实现方法,还对比了多种技术方案,因此在阅读时应重点关注Elasticsearch的优势及其具体应用场景,并结合实际项目需求选择合适的技术方案。此外,对于地理坐标系统(如WGS84、GCJ-02、BD-09等)的理解也有助于更好地掌握地理位置检索技术。

2025-08-07

01-基于Elastic地理位置检索-搜索附近 j九川 线上 20250806.zip

01-基于Elastic地理位置检索-搜索附近 j九川 线上 20250806.zip

2025-08-07

02-腾讯云 ES 百亿级 AI Search 优化实践 陈曦 深圳 20250727

分享腾讯云 ES 如何通过文本语义理解、向量空间建模与AI推理能力的三位一体架构,助力 IMA/微信读书/视频号等头部产品实现多模态检索能力。在生成式AI重塑产业格局的当下,我们正推动搜索技术从「信息匹配」向「认知理解」的范式转移,打造业界领先的「搜索即服务」智能基座。

2025-07-30

03-Elastic - Agentic RAG 构建之路 李捷 深圳 20250727

内容概要:本文详细介绍了Elastic-Agentic RAG的构建路径及其优势。RAG(Retrieval-Augmented Generation)是一种结合检索和生成模型的技术,而Agentic RAG进一步增强了这种能力,使其能够处理更复杂的企业级应用场景。文章首先探讨了RAG的局限性,指出传统的RAG主要局限于特定的知识库检索,难以应对多源数据融合、复杂格式处理以及实时数据查询等问题。接着,文章阐述了构建Agentic RAG所需的引擎,强调了其需要具备的进阶能力,如多步推理、动态任务规划、复杂数据处理和跨源协作检索等。此外,文中还展示了Elasticsearch在生成式AI应用中的全面功能,包括创建向量嵌入、混合搜索、灵活选择嵌入模型、过滤和切片等功能,突出了Elasticsearch相较于其他向量数据库的优势。最后,文章通过案例研究,如微信读书的智能阅读实践和敦煌数字藏经阁的RAG问答实践,展示了Elastic-Agentic RAG的实际应用效果,如提高客户和员工满意度、降低风险和总拥有成本等。 适合人群:对企业级AI应用感兴趣的IT专业人士、数据科学家、架构师以及希望了解如何利用AI技术优化业务流程的管理人员。 使用场景及目标:①解决企业内部复杂的数据处理和查询需求,如财务风险报告、生产良品率分析等;②实现多源数据的无缝整合,打破数据孤岛,提高数据利用率;③通过智能化的查询和分析工具,提升业务决策的速度和准确性;④构建高效、安全、可扩展的AI基础设施,支持企业的长期发展。 其他说明:Elastic-Agentic RAG不仅是一个技术解决方案,更是企业数字化转型的重要工具。它帮助企业更好地理解和利用自身

2025-07-30

01-AI 驱动 - 搜索的未来 刘晓国 深圳 20250727

1)为什么需要向量搜索? 2)RAG 是什么? 3)Elastic 在向量搜索上的最新进展 4)案例分析

2025-07-30

04-Elasticsearch 在日志系统的应用 石樊 深圳 20250727

内容概要:本文详细介绍了富途网络科技有限公司在其日志系统中应用Elasticsearch(ES)的经验,涵盖日志系统的架构、遇到的问题及其解决方案,以及引入ES serverless的原因和效果。富途的日志系统包括SDK、公共组件、Nginx及第三方日志的采集,支持JSON、行采集、分隔符采集等多种格式,确保日志的结构化和字段一致性。针对日志流量波动导致的ES稳定性问题,采用kafka弹性流量、logstash容器自动扩缩容、ES serverless等措施,解决了写入延迟和索引滚动时的短暂写入阻塞。此外,还解决了日志写入时的类型冲突问题,并通过引入ES serverless降低了运维复杂度和成本。未来,富途计划利用ES的文本分类聚合功能,支持日志聚类和AI分析。 适用人群:从事日志系统开发、运维的技术人员,尤其是对Elasticsearch有需求或正在使用的企业IT团队。 使用场景及目标:①解决日志系统中常见的流量波动、类型冲突等问题;②优化日志系统的性能和成本;③探索日志系统的未来发展,如日志聚类和AI分析。 其他说明:本文不仅提供了技术实现的具体方法,还分享了

2025-07-30

Elasticsearch 可搜索快照 - 降本增效的实践与探索 线上 夏乔 20250717

内容概要:本文详细介绍了Elasticsearch可搜索快照技术,旨在解决大规模Elasticsearch集群中历史归档数据带来的高存储成本、低访问效率和大运维压力的问题。文章首先分析了痛点,包括TB级数据积累导致的历史归档数据占比高、存储成本高、访问效率低等问题。接着介绍了现有Hot-Warm-Cold架构结合ILM的局限性,并提出可搜索快照作为改进方案。可搜索快照允许直接在低成本对象存储上的快照数据中进行搜索,无需预先恢复索引,具有降低存储成本、计算与存储分离、可在线访问归档数据和简化运维等优势。文章还详细解释了可搜索快照的工作原理,包括快照创建、挂载、按需加载和缓存机制。 适合人群:Elasticsearch集群管理员、运维工程师、系统架构师和技术决策者。 使用场景及目标:①适用于日志、指标、APM数据的长期归档与分析;②用于合规性与审计;③作为灾难恢复的只读副本;④支持跨集群搜索历史数据;⑤通过计算与存储分离,实现资源独立扩展,降低运维压力。 其他说明:本文不仅介绍了可搜索快照的技术细节,还通过实际案例展示了其在降本增效方面的显著效果。建议读者结合自身集群情况,评估并实施可搜索快照,以优化数据管理和降低总体拥有成本。

2025-07-18

【大数据知识库】基于Qwen2.5-14B与Elasticsearch的智能问答系统设计:传统检索与向量检索对比及RAG架构应用

内容概要:本文详细介绍了基于Qwen2.5-14B与Elasticsearch的大数据知识库智能问答系统。首先,文章对比了传统检索和向量检索的特点,指出向量检索在语义理解和复杂查询方面的优势。接着,阐述了RAG(检索增强生成)架构的工作流程及其核心价值,包括提高回答准确性、实时更新知识库、减少生成内容的虚构风险等。最后,重点介绍了基于大模型和Elasticsearch构建的智能问答系统的技术方案和实测效果,展示了其在处理多格式文档、专业术语理解等方面的高效性,并提出了进一步优化的方向,如模型微调、向量化改进和文档切分粒度调整。 适合人群:对大数据处理、自然语言处理和智能问答系统感兴趣的开发人员、数据科学家和技术爱好者。 使用场景及目标:①构建针对非公开文档的高效、精准、自然语言交互式智能知识问答系统;②支持多格式文档的统一处理与检索;③提升企业内部知识管理和信息获取的效率;④应用于客服机器人、知识问答、技术支持、教育与学习等领域。 其他说明:本文不仅介绍了技术原理,还提供了具体的实施步骤和代码示例,如使用FSCrawler进行文档摄取、利用text2vec模型进行向量化等。此外,文章强调了系统在实测中的高效性和准确性,并展望了未来的技术优化方向,鼓励读者结合自身业务场景深入探索和实践。

2025-07-10

01-AI 驱动 - 搜索的未来 刘晓国 南京 20250628

1)为什么需要向量搜索? 2)RAG 是什么? 3)Elastic 在向量搜索上的最新进展 4)案例分析

2025-06-28

【AIOps领域】基于M02-双 MCP 赋能ES Luke 南京 20250628CP框架的Elasticsearch与Kibana智能根因分析系统设计:提升企业数据洞察效率和自动化运维能力

内容概要:本文介绍了在双 MCP框架下,Elasticsearch (ES) 和 Kibana 新一代 AIOps 实践的发展和应用。文章首先概述了项目背景,指出尽管 ES 已经在自动化根因分析、动态数据洞察等方面展现了巨大潜力,但其在 AI 领域的应用尚未得到充分挖掘。接着,文章详细解释了 MCP(模型上下文协议)的概念及其重要性,强调它是 AI 助手与外部数据源无缝交互的关键协议,类似于 AI 领域的“USB-C”或“HTTP”协议。MCP 定义了应用程序和 AI 模型间交换上下文信息的标准方式,简化了 AI 应用的开发和集成。文中还展示了如何通过 MCP 实现 ES 和 Kibana 的智能交互,具体包括资源读取、工具调用、提示模板等功能,并通过实际案例演示了利用 LLM 和 MCP 快速处理安全事件的流程。最后,文章展望了未来的发展方向,如开源 ES 的大模型记忆模块和开发专门的 MCP 客户端。 适合人群:对 AIOps、Elasticsearch、Kibana 或 AI 技术感兴趣的 IT 专业人员,特别是那些希望提高数据分析效率、优化系统管理和提升安全性的技术人员。 使用场景及目标:①利用 MCP 实现 ES 和 Kibana 与 LLM 的无缝对接,加速故障排查和根因分析,将工作量从数小时甚至几天缩短至分钟级别;②通过自然语言交互方式,使 AI 能够理解和生成数据洞察,优化数据可视化;③构建高效的数据驱动 AI 解决方案,提升企业在复杂 IT 环境中的问题诊断和优化能力。 其他说明:文章由 AI 解决方案架构师 Luke Azmat Ablat 主讲,他专注于 ES 在 AI 领域的应用,曾主导多个相关项目并推动了 ES/Kibana MCP Server 开源项目的发展。读者可以通过官方 GitHub 获取更多关于 MCP 社区和项目的最新进展。

2025-06-28

03-Elasticsearch 数据流转之道 - 从写入到查询的技术探秘 尚雷.南京 20250628

内容概要:本文深入探讨了Elasticsearch的数据流转机制,从写入到查询的全过程进行了技术剖析。首先强调了关注数据流转的重要性,包括性能优化、瓶颈识别、资源配置和成本控制。接着介绍了Elasticsearch如何基于PacificA算法进行改进,以适应互联网级别的数据架构需求。文章详细解析了Elasticsearch的写入和读取流程,包括路由机制、刷新与合并操作,以及不同写入模式的选择。最后通过实际案例展示了性能优化的具体方法,如合理设置副本数量、优化索引大小和管理操作系统缓存。 适合人群:具备一定Elasticsearch使用经验的开发人员和技术管理人员,尤其是对性能优化和架构设计有需求的用户。 使用场景及目标:①理解Elasticsearch内部机制,识别性能瓶颈并进行优化;②掌握写入和查询流程,合理配置系统资源;③通过实际案例学习如何优化索引、副本设置和缓存管理,提高系统稳定性和响应速度。 阅读建议:本文内容较为深入,建议读者结合自身应用场景,重点关注与自身业务相关的性能优化部分,并尝试在实际环境中应用所学知识,进行针对性的调整和测试。

2025-06-28

04-ES日志集群大规模迁移实践-李猛-南京-20250618

内容概要:本文详细介绍了ES(Elasticsearch)日志集群的大规模迁移实践,由Elastic Stack实战专家李猛分享。迁移背景涵盖现有集群架构、日志规模、性能需求及新集群架构特点。针对迁移方案,文中对比了Reindex、Backup&Restore、Logstash/三方工具以及CCR四种方法,最终确定以CCR为主、Reindex为辅的组合策略。迁移实践中,重点讲述了CCR配置、任务脚本编写与执行的具体步骤。同时,针对迁移过程中遇到的新旧集群并行切换、CCR并行与索引限制、旧集群架构限制、迁移时间段限制、超大索引、数据一致性及硬件问题进行了深入剖析。最后,探讨了ES运维工具包(如数据比对脚本、CCR创建+取消工具)的应用。 适合人群:具备一定Elasticsearch使用经验,从事日志管理、运维工作的技术人员。 使用场景及目标:①了解ES日志集群大规模迁移的完整流程与关键步骤;②掌握不同迁移方案的选择依据及其优缺点;③解决迁移过程中可能遇到的技术难题;④提升ES集群运维效率与稳定性。 阅读建议:本文内容详实,技术细节丰富,在阅读时应重点关注迁移方案的选择依据、实际操作步骤以及遇到的问题和解决方案。建议读者结合自身实际情况,参考文中提供的具体案例和技术手段,逐步理解和掌握ES日志集群迁移的相关知识。

2025-06-28

腾讯云 ES AI 搜索优化实践 刘忠奇 线上 20250605

1. RAG 架构的搜索增强实践 2. 自研 v-pack 插件向量增强技术解析 * 存储降本九成:向量裁剪技术 * 准召提升手段:多算法融合排序框架

2025-06-05

ES/Ksibana 双MCP框架下的新一代AiOps实践 Luke 线上 20250521

内容概要:本文介绍了Elasticsearch和Kibana在双MCP框架下实现的新一代AIOps实践。作者Luke Azmat Ablat是AI解决方案架构师,专注于Elasticsearch在AI领域的应用,特别是在低资源语言搜索体验和复杂混合搜索方面的优化。文中强调了MCP(模型上下文协议)的重要性,它由Anthropic提出并被广泛认可,旨在统一AI模型与外部数据源的交互方式。通过MCP协议,Elasticsearch和Kibana能更好地结合LLM能力,实现分钟级别的故障排查和根因分析,极大提升了AIOps效率。具体应用包括实时搜索、可视化管理和智能交互,涵盖从集群状态检查到异常区域深度调查等多个场景。; 适合人群:对AI运维(AIOps)、Elasticsearch和Kibana有研究兴趣或工作需求的技术人员,尤其是从事IT运维、数据管理和AI开发的专业人士。; 使用场景及目标:①利用MCP协议整合Elasticsearch和Kibana,实现高效的自动化根因分析;②通过自然语言交互简化集群管理和数据分析流程;③优化数据洞察,提高故障排查速度,从数小时甚至数天缩短到几分钟。; 其他说明:本文不仅探讨了技术理论,还提供了实战演示,展示了如何在现有环境中部署和使用MCP框架。未来计划包括开源大模型记忆模块和支持中英混合搜索等功能,进一步扩展Elasticsearch的应用范围。

2025-05-22

05-ES AI Assistant集成 DeepSeek QwQ,搭建智能运维助手 槐新 杭州 20250419与应用场景演示

内容概要:本文详细介绍了如何通过集成DeepSeek/QwQ模型搭建基于Elasticsearch(ES)的智能运维助手,以提升运维效率和问题解决能力。文章首先阐述了大语言模型(LLM)在知识问答场景中的局限性,如幻觉问题、知识受限等,进而引出检索增强生成(RAG)技术的优势,包括实时更新知识库、可解释性和减少幻觉。接着,文章介绍了新一代AI搜索应用——Agentic RAG,它通过引入人工智能代理,实现了多源协同检索、多轮交互和复杂任务处理的能力。此外,文章还展示了Elasticsearch的功能及其与DeepSeek/QwQ的深度集成,具体包括实时状态诊断、动态生成可视化数据看板、智能查询构建等。最后,通过几个实际应用场景的演示,如集群运维、可视化分析和DSL查询生成,展示了该智能运维助手的强大功能。 适合人群:具有运维经验的IT工程师、系统管理员以及对Elasticsearch和AI技术感兴趣的开发者。 使用场景及目标:①通过自然语言指令自动构建精准查询语句,实现查询构建-执行-优化的全流程自动化;②辅助集群运维和索引管理,提供智能建议,降低技术门槛;③进行可视化分析,帮助用户快速理解日志信息,生成相关图表;④支持多模态向量搜索,提升搜索精度和开发体验。 阅读建议:由于本文涉及大量技术细节和实际操作步骤,建议读者在阅读时结合实际案例进行理解和实践,尤其是对Elasticsearch和AI技术的应用有初步了解的读者,可以通过动手实验加深理解。

2025-04-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除