Observability
文章平均质量分 94
Elastic 中国社区官方博客
Elastic 首席布道师,Elastic 认证工程师,认证分析师,认证可观测性工程师,阿里云最有价值专家
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
使用 Elastic Observability 排查你的 Agents 和 Amazon Bedrock AgentCore
摘要:Elastic推出针对Amazon Bedrock Agent Core的可观测性集成方案,实现端到端的Agentic AI监控。该方案通过结合平台层指标(Runtime、Gateway、Memory、Identity组件)和应用层OpenTelemetry追踪,解决非确定性行为、黑盒执行和成本盲点等核心挑战。功能包括预置仪表盘、告警模板、分布式追踪瀑布图,以及AI驱动的日志分析(Streams)和专属SRE助手。方案支持从CloudWatch自动采集指标,并通过OTel实现应用级埋点,提供从模型推理原创 2025-12-10 15:03:18 · 567 阅读 · 0 评论 -
快速找到答案,将 OpenTelemetry traces 与 Elastic Observability 中现有的 ECS 日志关联起来
摘要:本文介绍了如何通过Elastic Observability将OpenTelemetry traces与ECS日志关联,实现现代可观测性与传统ECS系统的兼容。使用Elastic Distribution of OpenTelemetry(EDOT)的Java SDK注入trace.id和span.id到ECS日志中,并通过EDOT Collector采集处理,确保数据在Kibana中的关联性。文章演示了从混合架构到纯OTel的过渡方案,既保留现有ECS投资,又支持向OTel原生标准的平滑迁移。原创 2025-12-10 10:09:29 · 396 阅读 · 0 评论 -
AutoOps 实际应用:调查 ECK 上的 Elasticsearch 集群性能
Elastic的InfoSec团队在多集群ECK环境中部署AutoOps,显著提升了运维效率。通过实时问题检测和可视化分析,将集群性能调查时间从30分钟缩短至5分钟。团队采用Helm chart实现基础设施即代码管理,利用Cloud Connect功能简化安装流程。实际案例显示,AutoOps能快速定位写入拒绝问题,提供分片热点可视化,并通过集群重路由即时解决问题。该方案为云和本地部署提供统一运维体验,大幅降低了Elasticsearch的运维复杂度。原创 2025-12-10 09:34:40 · 608 阅读 · 0 评论 -
Elastic Streams 介绍 - 9.2
摘要:Streams通过AI技术简化日志管理流程,实现日志的智能解析、自动分区、事件监测、保留策略和质量控制。它允许将所有日志发送至单一入口点,由系统自动完成结构化处理、分类存储和异常检测,显著降低运维复杂度。该方案帮助团队快速将原始日志转化为可操作洞察,提升故障排查效率,确保数据可靠性,同时优化存储成本。Streams使日志管理从被动记录转变为主动监控工具,为SRE和DevOps团队提供端到端的智能化日志处理解决方案。原创 2025-12-04 15:33:09 · 754 阅读 · 0 评论 -
Elastic Observability 的 AIOps:现代 AIOps 与 Log Intelligence
摘要:Elastic最新发布的Observability 9.2(Streams)通过AI驱动的日志智能技术革新AIOps实践。Streams工具集提供自动日志分类、多维异常检测和增强根因分析能力,能快速处理PB级日志数据,将非结构化日志转化为可执行洞察。该方案特别适用于云原生环境,通过将日志与指标、追踪数据关联,显著提升故障诊断效率。研究表明,使用Streams后,原本需要数小时的手动日志分析可缩短至几分钟完成,使团队能更专注于业务创新而非故障排查。(149字)原创 2025-11-27 13:12:25 · 1026 阅读 · 0 评论 -
Elastic Observability:Streams 数据质量与故障存储洞察
Elastic Observability推出Streams数据质量功能,通过AI驱动帮助用户监控和管理数据质量。该功能可识别三类问题文档:Degraded(字段被忽略)、Failed(被拒绝)和综合质量评分,并提供可视化图表跟踪问题趋势。用户可设置警报规则、查看问题字段详情,并利用failurestore存储被拒文档以便修复。技术实现基于ES|QL查询计算文档质量比例,并通过阈值自动评估数据状态。该功能已在Serverless版本上线,即将面向自托管和Elastic Cloud用户推出,帮助用户确保数据可原创 2025-11-25 07:21:57 · 1117 阅读 · 0 评论 -
Elastic 被评为 IDC MarketScape:2025 年全球可观察性平台供应商评估的领导者
Elastic被IDC MarketScape评为2025年全球可观察性平台领导者,凭借其开放标准架构、可扩展性和业务感知能力。通过创新功能如Streams(AI驱动的日志处理)和Elastic AI Assistant,Elastic简化了问题检测和解决流程,降低成本并提升效率。其统一平台整合了可观察性、安全和搜索,支持从被动故障排除转向主动智能运维。Elastic持续推动技术创新,包括开源贡献和透明开发实践,致力于为企业提供高性能、经济高效的解决方案。原创 2025-11-18 16:58:39 · 840 阅读 · 0 评论 -
在 Elastic Observability 中使用 OpAmp 对 EDOT SDK 进行集中配置
本文介绍了如何在Elastic Observability中通过OpAMP协议实现EDOT(Elastic Distribution of OpenTelemetry)SDK的集中配置管理。主要内容包括:1)OpAMP协议的基本原理,EDOT Collector作为服务器端管理配置;2)支持集中配置的EDOT SDK版本和Elastic Stack版本要求;3)配置EDOT Collector启用apmconfig扩展;4)通过环境变量ELASTIC_OTEL_OPAMP_ENDPOINT启用EDOT SD原创 2025-11-13 14:23:14 · 829 阅读 · 0 评论 -
Observability:适用于 PHP 的 OpenTelemetry:EDOT PHP 加入 OpenTelemetry 项目
Elastic向OpenTelemetry社区捐赠其PHP版OpenTelemetry解决方案(EDOTPHP),这将显著简化PHP应用的可观测性实现。该捐赠已被正式接受,标志着为全球广泛使用的PHP语言带来零配置、高性能可观测方案的重要里程碑。EDOTPHP提供自动代理加载、原生C++性能优化、异步通信等功能,使安装和监控PHP应用像安装系统包一样简单,无需修改代码或手动配置。此次合作将使OpenTelemetry生态覆盖主要编程语言,推动可观测性在各类环境中的无障碍应用。原创 2025-11-11 17:35:07 · 1265 阅读 · 0 评论 -
从 Kubernetes 上的 Windows 容器中摄取 IIS 日志
本文介绍了在Kubernetes中监控Windows工作负载时处理IIS访问日志的解决方案。由于IIS日志被容器元数据包裹导致无法搜索,作者提出使用Elasticsearch的ingest pipeline来检测IIS日志、去除Kubernetes元数据,并将其自动路由到IIS集成中进行结构化解析。该方法无需基础设施变更即可实现日志字段映射,显著提升故障排查效率。文章详细说明了pipeline创建步骤、测试验证方法和性能优化建议,最终使工程团队能够基于结构化数据进行查询、构建仪表板和设置告警。这种模式也适用原创 2025-11-10 11:06:17 · 1092 阅读 · 0 评论 -
使用 Instrumentation Score 和 Elastic 的 OpenTelemetry 数据质量洞察
本文探讨了OpenTelemetry数据质量的InstrumentationScore评估方法。尽管OpenTelemetry规范提供了数据收集指导,但高灵活性容易导致数据质量问题。InstrumentationScore通过标准化规则评估数据质量,并支持按服务分解分析,帮助定位问题根源。作者利用Elastic Stack构建了数据质量分析POC,展示了如何通过仪表盘可视化评估结果,包括规则违规程度和具体示例。实验发现OpenTelemetry Demo的得分仅为35,暴露出数据收集中的问题。文章指出,结合原创 2025-11-07 16:43:09 · 1079 阅读 · 0 评论 -
Elastic Streams 中的数据协调:稳健架构深度解析
摘要: Elastic Stack推出的Streams将数据流、索引模板等组件整合为统一原语,简化了数据管理流程。团队采用基于协调(reconciliation)的架构重构代码,借鉴Kubernetes和React的设计理念,建立了清晰的状态模型和请求生命周期。新架构通过分离决策与执行、集中验证、支持批量操作和试运行等功能,显著提升了系统的可靠性、可扩展性和可维护性。这一改进不仅解决了原有系统的技术债务,还为未来功能演进奠定了坚实基础,体现了Elastic"渐进改进"的开发理念。原创 2025-11-07 14:48:16 · 698 阅读 · 0 评论 -
Elastic Observability 中的 Streams 如何简化保留管理
Streams简化了Elasticsearch中的保留管理,提供统一视图来监控和调整数据生命周期。它整合了DSL和ILM两种策略,通过可视化界面展示数据存储量、增长趋势及各生命周期阶段分布。用户可以轻松切换管理方式、配置保留周期,并利用继承模型实现层级策略同步。新增的API确保策略能一致应用到所有索引。Streams将复杂的保留管理简化为直观操作,提升数据生命周期管理的效率和透明度。原创 2025-10-31 10:47:26 · 680 阅读 · 0 评论 -
实时日志与繁荣:修复可观测性中的一个根本性缺陷
摘要:Elastic推出的Streams功能通过AI技术重新定义可观测性,重点解决传统方法过度依赖指标和追踪而忽视关键日志信息的痛点。该系统能自动解析非结构化日志,识别重大事件(SignificantEvents),帮助SRE快速定位问题根因。相比手动搜索海量日志,Streams实现了从被动应对到主动发现的转变,将调查时间从数小时缩短至几分钟。该方案还计划进一步整合指标和追踪数据,构建统一的智能分析层,最终实现自动化的根因分析和修复建议,真正兑现可观测性的承诺。原创 2025-10-31 09:26:19 · 2051 阅读 · 0 评论 -
将 Streams 引入 Observability:调查的第一站
摘要:Elastic推出全新AI功能Streams,旨在将日志转化为高效可观测性工具。该功能通过AI驱动的自动分区、解析和重大事件识别,帮助工程师快速定位系统问题根源。Streams支持多种日志格式和来源,简化数据管理流程,显著缩短故障排查时间。技术提供两种模式:Streams(处理已索引数据)和Logs Streams(直接摄取原始日志),并包含数据质量管理和成本控制功能。该解决方案已在Elastic 9.2版本正式发布,用户可通过Elastic Cloud试用。原创 2025-10-28 10:23:15 · 1171 阅读 · 0 评论 -
在 Elastic Observability 中,启用 TSDS 集成可节省高达 70% 的指标存储
Elastic Observability 最新版本(8.9+)中最受欢迎的可观测性集成现在默认使用具备存储成本优势的时间序列索引模式来存储指标数据。Kubernetes、Nginx、System、AWS、Azure、RabbitMQ、Redis 等常用的 Elastic Observability 集成都已启用时间序列数据流(TSDS)。原创 2025-10-27 09:05:44 · 927 阅读 · 0 评论 -
在 Elastic Observability 中轻松探索和分析指标
摘要:Elastic Observability 9.2版本推出三项重要指标增强功能:1) 通过TSDS索引模式和ES|QL查询语言简化时间序列分析,提供RATE()等专用聚合函数,性能提升显著;2) Discover界面新增指标探索环境,支持可视化分析和仪表盘集成;3) 原生OTLP端点提升指标导入性能。这些改进使SRE团队能更高效地进行指标监控、告警和根因分析,强化了Elastic的端到端可观测性能力。原创 2025-10-26 10:16:47 · 1035 阅读 · 0 评论 -
Elastic 入围 2025 TSIA STAR 奖 “客户门户创新” 决赛名单
Elastic入围2025年STAR Awards"改善数字客户体验的客户门户创新"类别决赛,因其AI创新获得TSIA认可。Elastic利用自研SearchAI平台开发了Support Assistant,整合语义搜索、向量搜索等技术,通过RAG架构实现自助支持。该工具推出后带来显著效益:数字支持增长49%,AI案例偏转增加6倍,知识文章量提升130%,客户响应时间缩短23%。未来计划扩展更多AI功能,持续提升客户体验。这一成就彰显了Elastic在AI驱动客户支持领域的领先地位。原创 2025-10-23 10:31:02 · 961 阅读 · 0 评论 -
基于 AI 的日志事件响应:Elastic Observability 技术深度解析
【摘要】Elastic Observability结合AI技术实现智能事件响应,通过无监督机器学习实时检测日志异常,自动触发高精度警报。其AI助手利用增强检索生成(RAG)技术,提供根本原因分析、业务影响评估和修复建议,并支持自动化沟通文档。系统整合机构知识库,实现知识复用,将传统被动运维转变为数据驱动的主动操作,显著减少停机时间并提升事件响应效率,最终转化为企业竞争优势。原创 2025-10-23 10:13:14 · 852 阅读 · 0 评论 -
Elastic:汽车行业正在转型 — 行业领袖该如何保持领先?
摘要: 汽车行业正面临供应链挑战、新兴车辆架构和严格法规的转型期。随着买家行为和出行偏好的变化,以及AI与连接技术的进步,到2035年"即服务"模式收入预计增长400%。行业通过MOBI等合作提升供应链透明性,并借助软件定义汽车增强灵活性,但需应对安全与法规挑战。联网汽车数据激增要求端到端可观测性解决方案,同时UNECE等机构加强网络安全监管。统一数据平台和机器学习可优化决策,推动行业变革。原创 2025-10-20 09:04:56 · 909 阅读 · 0 评论 -
Elastic:OpenTelemetry 维护者的一天
本文探讨了开源项目维护者的多重角色与责任。作为Elastic工程师和OpenTelemetry维护者,作者Damien Mathieu分享了维护者不仅负责代码审查,还需承担项目指导、方向规划、社区管理和冲突调解等工作。维护者需平衡各方需求,确保项目可持续发展,同时培养新贡献者成长。文章指出,良好的维护能促进社区繁荣,使项目更具可靠性和吸引力。尽管面临诸多挑战,但维护工作带来的社区建设成就感和技术协作机会使其极具意义。原创 2025-10-15 10:24:47 · 868 阅读 · 0 评论 -
AutoOps:简单的 Elasticsearch 集群监控与管理现已支持本地部署
Elastic宣布AutoOps功能现已支持自管理集群,为本地或私有托管环境提供简化的集群管理。该功能包括实时问题检测、性能优化建议和资源利用率分析,旨在减少管理负担和手动调优工作。企业用户可通过Elastic Cloud Connect快速安全地连接自管理集群,免费使用AutoOps服务。该功能已帮助现有客户降低10%的年度成本,并提升系统性能和可靠性。原创 2025-10-03 08:34:41 · 895 阅读 · 0 评论 -
AutoOps:简化自管理 Elasticsearch 的旅程
本文介绍了Elastic推出的AutoOps工具如何简化自管理Elasticsearch集群的运维工作。作者以DevOps工程师视角,分享其5分钟快速部署体验:通过轻量级agent连接自管理集群,无需额外基础架构即可获取实时监控。AutoOps能自动检测性能瓶颈、资源浪费等问题,并提供可操作建议,如发现未配置副本的索引、闲置节点等。该工具不仅提升了运维效率,还支持与Elastic技术支持团队共享实时数据,实现更高效的协作。作为Elastic云连接服务的首款产品,AutoOps标志着自管理集群也能享受云端智能原创 2025-10-03 08:17:37 · 1631 阅读 · 0 评论 -
从 Uptime 到 Synthetics 在 Elastic 中的迁移手册
摘要:本文介绍了如何将Elastic Uptime监控(TCP/ICMP/HTTP)迁移到Synthetics解决方案。随着Uptime在8.15.0版本被弃用,用户需通过配置Private Locations和Synthetics Projects实现迁移。主要内容包括:1)设置Fleet Server和Elastic Agent;2)部署Docker容器运行的Elastic Agent;3)使用Synthetics Project基于代码管理监控,支持GitOps流程;4)将原有heartbeat.ym原创 2025-09-25 15:42:08 · 1165 阅读 · 0 评论 -
在 Elastic Observability 中使用 Discover 的追踪获取更深入的应用洞察
Elastic在Discover中引入traces功能,支持通过ES|QL查询分析追踪数据,实现灵活的跨服务问题诊断。用户现在可以在熟悉界面中直接搜索span、过滤属性,并查看trace瀑布图,无需切换工具。新功能简化了复杂场景调查,如关联慢查询与错误日志,并支持OpenTelemetry数据。该功能已在Serverless和8.19+/9.1+版本中提供,未来还将增强数据关联和UI体验。原创 2025-09-15 13:49:32 · 1175 阅读 · 0 评论 -
使用 OpenTelemetry 从你的日志中获取更多信息
本文介绍了如何利用OpenTelemetry超越基础的日志摄取功能,实现结构化日志、地理信息增强和高级分析。通过OpenTelemetry Collector,可以自动丰富日志数据并提取关键字段,使用OTTL配置实现日志结构化。文章还展示了如何通过ES|QL进行数据分析,如统计错误请求、可视化全球访问分布等,并介绍了LogsDB的存储优化技术。最终指出,真正的价值在于将被动日志监控转变为主动的运维智能,通过结构化数据识别模式、预测问题,从而提升运维效率。原创 2025-09-13 11:02:18 · 1410 阅读 · 0 评论 -
Elastic:什么是日志分析?
日志分析是对IT系统生成的时序日志数据进行搜索、调查和可视化的过程,帮助团队发现系统异常、优化运营并预测未来问题。随着数据量激增,传统工具难以应对多样化的日志格式和大规模数据。现代方案通过集中管理、标准化和实时监控提升效率,应用场景涵盖性能优化、安全审计和用户行为分析等。Elasticsearch等工具提供可扩展的PB级处理能力,支持数据分层存储降低成本。日志分析正与AIOps结合,成为企业数字化转型的关键支撑。原创 2025-09-09 14:13:54 · 874 阅读 · 0 评论 -
Observability:更智能的告警来了:更快的分诊、更清晰的分组和可操作的指导
Elastic Stack 9.1版本推出告警功能三大升级:1)智能告警分组,基于相关性评分和推理机制,通过共享资源、时间关联和信号相似性实现精准分组;2)仪表盘智能链接,自动关联告警规则与相关仪表盘,提供可视化分析;3)嵌入式调查指南,为每个告警定制操作手册,包含分诊步骤和解决方案。这些改进旨在缩短故障检测(MTTD)和解决时间(MTTR),帮助运维团队快速定位问题并采取行动,提升事件响应效率。原创 2025-09-08 16:48:03 · 961 阅读 · 0 评论 -
Elastic Observability 中 Discover 的跟踪,用于深入的应用洞察
Elastic 将跟踪数据引入 Discover。看看你如何将即席数据探索和 ES|QL 的功能应用到你的跟踪数据中。在可观测性领域,上下文至关重要。多年来,Elastic APM 提供了专门的视图和功能,用于了解应用和服务的健康状况。当你需要了解结账服务的性能时,可以直接访问其专用页面,查看关键指标如延迟和吞吐量,并直接访问相关事务和错误。这种以实体为中心的视图对有针对性的监控和诊断非常宝贵。原创 2025-09-08 10:42:12 · 952 阅读 · 0 评论 -
可观测性差距:为什么你的监控策略还没准备好应对即将到来的变化
摘要:随着系统架构从单体应用转向微服务和Kubernetes,可观测性差距日益凸显。传统监控工具难以应对指数级增长的复杂性,采样数据会丢失关键信号。OpenTelemetry通过供应商中立性和标准化元数据解决了基础问题,而关联技术(如traceID)和wide-events数据结构能实现跨信号的无缝调查。AI驱动的分析利用丰富上下文可大幅缩短故障诊断时间。建议优先评估日志质量、采用OpenTelemetry,并投资现代化存储架构而非粗暴采样,以应对持续增长的复杂性挑战。 (149字)原创 2025-09-02 10:34:52 · 899 阅读 · 0 评论 -
在 Elasticsearch 中使用用户行为分析:使用 UBI 和 search-ui 创建一个应用程序
本文介绍了如何在Elasticsearch中使用用户行为洞察(UBI)功能,通过search-ui构建一个图书搜索应用来收集用户行为数据。内容包括:1)加载示例图书数据;2)创建search-ui应用程序并集成Elasticsearch连接器;3)配置后端服务处理UBI事件;4)实现搜索和点击结果时的UBI事件跟踪;5)收集用户设备、位置等附加信息。该方案将用户行为数据自动索引到ubi_queries和ubi_events两个索引中,通过唯一ID关联,帮助开发者分析用户行为并优化搜索体验。原创 2025-09-02 07:56:12 · 1358 阅读 · 0 评论 -
Observability:如何在隔离环境中部署 Elastic Agents
本文介绍了在隔离网络环境中部署ElasticAgent的自动化解决方案artifacts-bundler。该工具通过批量下载官方artifact、智能打包并支持本地NGINX容器部署,解决了受限环境下的更新难题。文章详细演示了从下载到部署的全流程,包括裸机/容器两种部署方式,并强调了ETag配置等关键技术细节。该方案已成功应用于政府、医疗等安全敏感领域,将原本数小时的手工操作简化为单一命令,显著提升了隔离环境下的ElasticStack部署效率。原创 2025-08-31 10:03:33 · 999 阅读 · 0 评论 -
Burgan Bank Türkiye 如何借助 Elastic 改造可观测性和安全性
**摘要:**Burgan Bank Türkiye通过部署Elastic技术实现IT系统可观测性革新,将事件响应时间缩短90%。该银行最初在OpenShift上遇到存储限制后,转向裸机部署Elastic集群,构建包含APM、日志和机器学习节点的混合架构。其创新包括本地化AI助手(基于Qwen模型)用于自然语言查询,以及数据掩码等安全措施。通过Elastic的机器学习功能,银行能主动检测交易异常,并与SolarWinds等系统集成形成端到端监控。与合作伙伴Gantek的战略协作保障了架构灵活性,支持银行业务原创 2025-08-30 10:29:58 · 1264 阅读 · 0 评论 -
Elasticsearch logsdb 索引模式和 TSDS 的业务影响
Elasticsearch 8.19和9.1版本在存储引擎方面取得重大突破,通过logsdb索引模式和时间序列数据流(TSDS)功能实现了70%以上的存储优化和19%的吞吐量提升。这些改进使企业能存储更多数据而不增加成本,提高系统可观测性,降低平均修复时间(MTTR),并支持AI分析。Enterprise版还支持synthetic_source功能,无需存储原始JSON文档。这些优化让企业能以更低成本实现数据统一管理,支持合规需求,并为AI应用提供更丰富的数据基础。原创 2025-08-30 10:12:44 · 1120 阅读 · 0 评论 -
Elastic 的托管 OTLP 端点:为 SRE 提供更简单、可扩展的 OpenTelemetry
Elastic宣布推出托管OTLP端点,简化OpenTelemetry数据摄取流程。该功能支持原生OTLP数据存储,自动扩展处理突发流量,并提供统一的日志、指标和追踪处理。开发者可通过SDK或Collector直接发送数据,无需管理基础设施。该服务现已在ElasticCloud Serverless上线,帮助用户简化可观测性管道并提升故障修复效率。原创 2025-08-18 10:55:41 · 1018 阅读 · 0 评论 -
失败存储:查看未成功的内容
Elastic推出全新"失败存储"功能,可捕获并索引处理失败的日志数据,解决数据丢失难追踪的问题。该功能通过将失败文档存入专用索引,提供数据摄取问题的可见性,支持调试模式变化和监控数据质量。用户可为单个或批量数据流启用该功能,并通过ES|QL和Kibana工具分析失败原因。失败数据默认保留30天,支持数据生命周期管理。该功能从Elastic 9.1和8.19版本开始提供,将逐步在日志索引上默认启用。原创 2025-08-14 09:28:48 · 1358 阅读 · 0 评论 -
哈希、存储、连接:使用 ES|QL LOOKUP JOIN 的日志去重现代解决方案
本文提出了一种创新方法,通过Elastic Stack和ES|QL查询引擎优化PowerShell日志存储,解决安全可见性与存储成本的矛盾。核心方案是:1)使用哈希值唯一标识脚本内容;2)仅存储一次完整脚本到查找索引;3)查询时通过LOOKUPJOIN重建完整上下文。实验显示存储量减少99.99%,同时保持全量分析能力。该方案包含Logstash事件克隆、ingest pipeline处理和ES|QL查询重建三个关键技术环节,既降低了存储成本,又不影响安全检测和取证分析能力。这种"哈希-存储-连接原创 2025-08-11 10:27:10 · 1249 阅读 · 0 评论 -
无服务器日志分析由 Elasticsearch 提供支持,推出新的低价层
摘要:Elastic推出全新无服务器日志分析服务Observability Logs Essentials,为SRE和开发者提供经济高效的云端日志管理方案。该服务基于Elasticsearch强大搜索能力,支持快速日志检索、ES|QL查询分析和可视化仪表板,无需管理基础设施即可实现自动扩展。特点包括:按用量计费的成本透明度、内置高可用性、简化运维流程,帮助团队快速定位系统问题根源。用户可无缝升级至功能更完整的Observability Complete版本。原创 2025-08-08 07:34:16 · 1064 阅读 · 0 评论 -
依靠 AI、ML 和可观测性来管理你不断增长的基础设施
【摘要】现代基础设施的复杂性和规模扩张对可观测性工具提出新挑战。文章指出四大关键技术:1)利用分离存储架构降低高保真数据成本;2)OpenTelemetry标准化实现全栈监测;3)统一元数据增强信号关联;4)AI/ML实现智能告警和根因分析。这些技术共同解决数据爆炸、厂商锁定和MTTR增长等问题,使运维效率与基础设施规模解耦。未来可观测性竞争将聚焦存储创新和AI驱动的动态工作流,而非传统监控功能。企业需采用这些技术应对云原生时代的运维挑战。原创 2025-08-07 07:40:37 · 826 阅读 · 0 评论 -
使用 OpenTelemetry 和 Elastic 对 Web 前端进行监测和监控
本文介绍了使用OpenTelemetry进行Web前端监测的方法与实践。文章对比了前端与后端监测的区别,指出前端监测常被忽视的现状,并通过一个基于Svelte和JavaScript的Web应用示例,展示了如何使用OpenTelemetry实现浏览器端监测。主要内容包括:前端监测的现状与挑战、OpenTelemetry浏览器监测的核心组件(追踪、日志、指标)、前后端信号关联的实现方法,以及如何捕获文档加载、用户交互和Core Web Vitals等关键指标。文章特别强调了上下文传播在构建完整应用追踪链路中的重原创 2025-08-06 08:00:00 · 1120 阅读 · 0 评论
分享