HDU 1619 Unidirectional TSP(dp)

202 篇文章 1 订阅

Description
现在有一个 m * n 的整数矩阵,请你编写一个程序计算出一条从左到右穿过矩阵的路径,并使此路径的费用最小。路径从矩阵的左侧的第一列的任意单元格开始,逐步穿过矩阵到达最右侧的一列的任意单元格。每一步是指从某单元格进入它一列的相邻单元格(如下图,可以是横向或斜向)。矩阵的第一行和最后一行实际是相邻的,你可以想象矩阵是包裹在一个横放的圆柱体外面。
这里写图片描述
路径的花费是指这条路径所穿越的所有单元格中的数字之和。
穿越两个略有不同的 5 * 6 的矩阵的路径如下图所示,这两个矩阵只有最后一行的数字不同。右侧的路径显示了第一行和最后一行相邻的效果。
这里写图片描述
Input
输入包括一系列矩阵描述。每个矩阵描述的第一行是 m 和 n,即矩阵的行数和列数;之后的 m 行,每行包括 n 个以空格分开的整数,则是当前矩阵的值,注意矩阵的值未必是正数。矩阵的行数 m 和列数 n 的范围是:1 <= m <= 10、 1 <= n <= 100;所有路径的费用值都可以用 30bit 的整数表示
Output
针对每一个矩阵,找出费用最小的路径,并将其输出。每个矩阵的输出包括两行,第一行是路径本身,即输出每一步所在的行,第二行则是该路径的费用。如果对于同一个矩阵有多条不同的费用最小路径,则输出左端行号较小的一条。
Sample Input
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 8 6 4
5 6
3 4 1 2 8 6
6 1 8 2 7 4
5 9 3 9 9 5
8 4 1 3 2 6
3 7 2 1 2 3
2 2
9 10 9 10
Sample Output
1 2 3 4 4 5
16
1 2 1 5 4 5
11
1 1
19
Solution
简单的DP,其中有几个细节,首先是输出字典序最小的可行解,这个就是倒着推,每次选择最小值中字典序最小的那个,如果只是求最小值这题就是道小水题了,重点在于怎么输出路径,因为在递推过程中可能会有很多条路径,记录比较麻烦,此处可以利用一个数组path[i][j]表示如果走到i行j列,那么下一步就要走path[i][j]行j+1列,这样一来,最终只需要确定路径起点就能通过path数组推出整条路径,而找路径起点只需要比较dp[i][1]找到最小值即可
Code

#include<stdio.h>
#include<string.h>
int dp[11][111],path[11][111];
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        for(int i=0;i<n;i++)
            for(int j=0;j<m;j++)
                scanf("%d",&dp[i][j]);
        for(int j=m-2;j>=0;j--)
            for(int i=0;i<n;i++)
            {
                int temp=i;
                if(dp[(i+1)%n][j+1]<dp[temp][j+1]||dp[(i+1)%n][j+1]==dp[temp][j+1]&&(i+1)%n<temp)
                    temp=(i+1)%n;
                if(dp[(i-1+n)%n][j+1]<dp[temp][j+1]||dp[(i-1+n)%n][j+1]==dp[temp][j+1]&&(i-1+n)%n<temp)
                    temp=(i-1+n)%n;
                dp[i][j]+=dp[temp][j+1];
                path[i][j]=temp;
            }
        int ans=1<<30,k;
        for(int i=0;i<n;i++)
            if(ans>dp[i][0])
            {
                ans=dp[i][0];
                k=i;
            }
        printf("%d",k+1);
        for(int i=0;i<m-1;i++)
        {
            printf(" %d",path[k][i]+1);
            k=path[k][i];
        }
        printf("\n%d\n",ans);
    }
    return 0;
}
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值