关闭

HDU 5812 Distance(数论)

170人阅读 评论(0) 收藏 举报
分类:

Description
定义两个正整数x和y之间的距离d(x,y)为将x变成y所需的最少操作次数,每次操作可以乘一个素数或者除一个素数,先给出一个集合S(初始为空),有以下三个操作
I x:将x加入到集合S中(如果S中已经有x则忽略此操作)
D x:将x从集合S中删去(如果S没有x则忽略次操作)
Q x:从集合S中找到一个z使得d(x,z)最小,输出最小d(x,z)(如果S是空集则输出-1)
Input
多组用例,每组用例首先输入一整数q表示操作数,之后q行每行一个字符一个整数x表示一次操作,以m=0结束输入(1<=q<=50000,1<=x<=1000000)
Output
对于每次查询操作,输出d(x,z)最小值,如果S是空集则输出-1
Sample Input
12
I 20
I 15
Q 30
I 30
Q 30
D 10
Q 27
I 15
D 15
D 20
D 30
Q 5
0
Sample Output
Case #1:
1
0
3
-1
Solution
令cnt[x]为x素因子分解后素因子幂指数和,那么有d(x,y)=cnt[x/gcd]+cnt[y/gcd],
其中gcd=gcd(x,y),令num[i][j]表示S中以i为因子的数除完i后素因子幂指数和为j的数的个数,对于一个查询x,我们想找到一个z使得gcd(x,z)最小,那么我们枚举gcd(x,z),即枚举x的因子i,如果存在某个最小的j使得num[i][j]不为0,那么min(j+cnt[x/i])即为答案,如果对于任意i不存在满足条件的j则输出-1,因为如果每次都O(20)的枚举j时间复杂度就是O(20qsqrt(x)),为降低复杂度可以用一个20位的二进制数flag[i]表示num[i][j]是否为0,这样每次求flag[i]的lowbit即可找到最小的j使得num[i][j]!=0,这样做时间复杂度就是O(qsqrt(x))
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 1111111
int mark[maxn],prime[maxn],res;//prime存储素数,从0开始,mark[i]表示i的最小素因数 
void get_prime(int n)//素数线性筛法,得到n以内所有素数共res个 
{
    memset(mark,0,sizeof(mark));
    res=0;
    for(int i=2;i<=n;i++)
    {
        if(!mark[i]) 
            mark[i]=prime[res++]=i;
        for(int j=0;j<res&&prime[j]*i<=n;j++)
        {
            mark[i*prime[j]]=prime[j];
            if(i%prime[j]==0) 
                break;
        }
    }
} 
int lowbit(int x)
{
    return x&(-x);
}
int q,n,cnt[maxn],num[maxn][20],vis[maxn],flag[maxn],pre[maxn];
char op[3];
int count(int n)//统计n的素因子幂指数和 
{
    int ans=0;
    while(n>1)
    {
        ans++;
        n/=mark[n];
    }
    return ans;
}
int get(int x)//找到最小的j使得num[x][j]!=0 
{
    int temp=lowbit(flag[x]);
    if(!temp)return INF;
    return pre[temp];
}
int main()
{
    int Case=1;
    get_prime(maxn-10);
    cnt[0]=0,cnt[1]=0;
    for(int i=2;i<maxn-10;i++)cnt[i]=count(i);
    for(int i=0;i<=20;i++)pre[1<<i]=i;
    while(~scanf("%d",&q),q)
    {
        printf("Case #%d:\n",Case++);
        memset(num,0,sizeof(num));
        memset(flag,0,sizeof(flag));
        memset(vis,0,sizeof(vis));
        while(q--)
        {
            scanf("%s%d",op,&n);
            if(op[0]=='I')
            {
                if(vis[n])continue;
                vis[n]=1;
                for(int i=1;i*i<=n;i++)
                    if(n%i==0)
                    {
                        num[i][cnt[n/i]]++,flag[i]|=(1<<cnt[n/i]);
                        if(i*i!=n)
                            num[n/i][cnt[i]]++,flag[n/i]|=(1<<cnt[i]);
                    }
            }
            else if(op[0]=='D')
            {
                if(!vis[n])continue;
                vis[n]=0;
                for(int i=1;i*i<=n;i++)
                    if(n%i==0)
                    {
                        num[i][cnt[n/i]]--;
                        if(!num[i][cnt[n/i]])flag[i]^=(1<<cnt[n/i]);
                        if(i*i!=n)
                        {
                            num[n/i][cnt[i]]--;
                            if(!num[n/i][cnt[i]])flag[n/i]^=(1<<cnt[i]);
                        }
                    }
            }
            else
            {
                int ans=INF;
                for(int i=1;i*i<=n;i++)
                    if(n%i==0)
                    {
                        ans=min(ans,cnt[i]+get(n/i));
                        if(i*i!=n)
                            ans=min(ans,cnt[n/i]+get(i));
                    }
                if(ans==INF)printf("-1\n");
                else printf("%d\n",ans);
            }
        }
    }
    return 0;
}
0
0
查看评论

HDU 5812 Distance 数论

Distance Problem Description In number theory, a prime is a positive integer greater than 1 that has no positive divisors other than 1 and i...
  • Mrx_Nh
  • Mrx_Nh
  • 2017-05-03 19:27
  • 122

hdu 5812 Distance 数论+思维枚举

题目连接 题意:我们定义d(a,b)为a通过乘除最少的素数到达b。比如d(15,50)=3,15*2*5/3=50。 我们定义3个操作和一个空的集合s: I x表示在集合s里插入一个x,如果存在x,忽略这个操作。 D x表示在集合x里删除x,如果不存在x,忽略这个操作。 Q x找到最小...
  • HowardEmily
  • HowardEmily
  • 2017-09-16 19:04
  • 90

HDU 5812 Distance

Problem Description In number theory, a prime is a positive integer greater than 1 that has no positive divisors other than 1 and itself. The distanc...
  • jtjy568805874
  • jtjy568805874
  • 2016-08-09 18:59
  • 356

hdu 5812(数论)

题意: 我们定义d(a,b)为a通过乘除最少的素数到达b。比如d(15,50)=3,15*2*5/3=50。 我们定义3个操作和一个空的集合s: I x表示在集合s里插入一个x,如果存在x,忽略这个操作。 D x表示在集合x里删除x,如果不存在x,忽略这个操作。 Q x...
  • Hallelujah520
  • Hallelujah520
  • 2017-09-15 15:49
  • 86

HDU 5812 Distance 暴力+素数打表

/* I insert x; D delect x; Q query min(d(x,y); d(x,y) =x 乘或除一个素数 变成y的最小次数; d(x,y) =ans[x/gcd(x,y)]+ans[y/gcd(x,y]; ans[i] i的素因子数; ...
  • vvv_557
  • vvv_557
  • 2017-07-16 21:21
  • 50

HDU - 5812 Distance 数学 + 思维

传送门:HDU 5812 题意:给出一个空集合和三个操作。操作I向集合中插入元素X,操作D删除集合中的元素X,操作Q,查询集合中的所有元素与X的最小距离是多少?  定义最小距离 d(x,y) 为从x变为y只通过乘或者除素数所需要的最少操作次数。例如:d(15,50)=3,因为 15/3...
  • lxy767087094
  • lxy767087094
  • 2017-09-16 21:50
  • 46

ACM hdu 数论题集

Volume 1 http://acm.hdu.edu.cn/showproblem.php?pid=1005 http://acm.hdu.edu.cn/showproblem.php?pid=1014 http://acm.hdu.edu.cn/showproblem.php?pid=10...
  • u010710717
  • u010710717
  • 2013-09-11 10:22
  • 2091

HDU 5974 数论

A Simple Math Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Descript...
  • black_miracle
  • black_miracle
  • 2016-11-07 18:13
  • 886

数论基础定理及其应用(hdu 2685 I won't tell you this is about number theory, hdu 2582 f(n),hdu 1792 A New Chan)

hdu 2685 I won’t tell you this is about number theory 定理:如果a>b,则gcd(am−bm,an−bn)=agcd(n,m)−bgcd(n,m);gcd(a^m-b^m,a^n-b^n ) = a^{gcd(n,m)}-b^{gcd(...
  • chen_ze_hua
  • chen_ze_hua
  • 2016-07-19 19:16
  • 203

[kuangbin带你飞]数论基础的简单题解

查看题目与代码参考 打星题还没做 Problem ALightOJ 1370 Bi-shoe and Phi-shoe 欧拉函数+枚举。令k = lucky number+1开始枚举k,直到lucky number ≤φ(k)\leq \varphi(k) Problem BLight...
  • qq_15714857
  • qq_15714857
  • 2015-09-30 18:53
  • 893
    个人资料
    • 访问:549117次
    • 积分:24496
    • 等级:
    • 排名:第322名
    • 原创:1943篇
    • 转载:0篇
    • 译文:0篇
    • 评论:68条
    最新评论