关闭

HDU 5812 Distance(数论)

80人阅读 评论(0) 收藏 举报
分类:

Description
定义两个正整数x和y之间的距离d(x,y)为将x变成y所需的最少操作次数,每次操作可以乘一个素数或者除一个素数,先给出一个集合S(初始为空),有以下三个操作
I x:将x加入到集合S中(如果S中已经有x则忽略此操作)
D x:将x从集合S中删去(如果S没有x则忽略次操作)
Q x:从集合S中找到一个z使得d(x,z)最小,输出最小d(x,z)(如果S是空集则输出-1)
Input
多组用例,每组用例首先输入一整数q表示操作数,之后q行每行一个字符一个整数x表示一次操作,以m=0结束输入(1<=q<=50000,1<=x<=1000000)
Output
对于每次查询操作,输出d(x,z)最小值,如果S是空集则输出-1
Sample Input
12
I 20
I 15
Q 30
I 30
Q 30
D 10
Q 27
I 15
D 15
D 20
D 30
Q 5
0
Sample Output
Case #1:
1
0
3
-1
Solution
令cnt[x]为x素因子分解后素因子幂指数和,那么有d(x,y)=cnt[x/gcd]+cnt[y/gcd],
其中gcd=gcd(x,y),令num[i][j]表示S中以i为因子的数除完i后素因子幂指数和为j的数的个数,对于一个查询x,我们想找到一个z使得gcd(x,z)最小,那么我们枚举gcd(x,z),即枚举x的因子i,如果存在某个最小的j使得num[i][j]不为0,那么min(j+cnt[x/i])即为答案,如果对于任意i不存在满足条件的j则输出-1,因为如果每次都O(20)的枚举j时间复杂度就是O(20qsqrt(x)),为降低复杂度可以用一个20位的二进制数flag[i]表示num[i][j]是否为0,这样每次求flag[i]的lowbit即可找到最小的j使得num[i][j]!=0,这样做时间复杂度就是O(qsqrt(x))
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 1111111
int mark[maxn],prime[maxn],res;//prime存储素数,从0开始,mark[i]表示i的最小素因数 
void get_prime(int n)//素数线性筛法,得到n以内所有素数共res个 
{
    memset(mark,0,sizeof(mark));
    res=0;
    for(int i=2;i<=n;i++)
    {
        if(!mark[i]) 
            mark[i]=prime[res++]=i;
        for(int j=0;j<res&&prime[j]*i<=n;j++)
        {
            mark[i*prime[j]]=prime[j];
            if(i%prime[j]==0) 
                break;
        }
    }
} 
int lowbit(int x)
{
    return x&(-x);
}
int q,n,cnt[maxn],num[maxn][20],vis[maxn],flag[maxn],pre[maxn];
char op[3];
int count(int n)//统计n的素因子幂指数和 
{
    int ans=0;
    while(n>1)
    {
        ans++;
        n/=mark[n];
    }
    return ans;
}
int get(int x)//找到最小的j使得num[x][j]!=0 
{
    int temp=lowbit(flag[x]);
    if(!temp)return INF;
    return pre[temp];
}
int main()
{
    int Case=1;
    get_prime(maxn-10);
    cnt[0]=0,cnt[1]=0;
    for(int i=2;i<maxn-10;i++)cnt[i]=count(i);
    for(int i=0;i<=20;i++)pre[1<<i]=i;
    while(~scanf("%d",&q),q)
    {
        printf("Case #%d:\n",Case++);
        memset(num,0,sizeof(num));
        memset(flag,0,sizeof(flag));
        memset(vis,0,sizeof(vis));
        while(q--)
        {
            scanf("%s%d",op,&n);
            if(op[0]=='I')
            {
                if(vis[n])continue;
                vis[n]=1;
                for(int i=1;i*i<=n;i++)
                    if(n%i==0)
                    {
                        num[i][cnt[n/i]]++,flag[i]|=(1<<cnt[n/i]);
                        if(i*i!=n)
                            num[n/i][cnt[i]]++,flag[n/i]|=(1<<cnt[i]);
                    }
            }
            else if(op[0]=='D')
            {
                if(!vis[n])continue;
                vis[n]=0;
                for(int i=1;i*i<=n;i++)
                    if(n%i==0)
                    {
                        num[i][cnt[n/i]]--;
                        if(!num[i][cnt[n/i]])flag[i]^=(1<<cnt[n/i]);
                        if(i*i!=n)
                        {
                            num[n/i][cnt[i]]--;
                            if(!num[n/i][cnt[i]])flag[n/i]^=(1<<cnt[i]);
                        }
                    }
            }
            else
            {
                int ans=INF;
                for(int i=1;i*i<=n;i++)
                    if(n%i==0)
                    {
                        ans=min(ans,cnt[i]+get(n/i));
                        if(i*i!=n)
                            ans=min(ans,cnt[n/i]+get(i));
                    }
                if(ans==INF)printf("-1\n");
                else printf("%d\n",ans);
            }
        }
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:313918次
    • 积分:18521
    • 等级:
    • 排名:第490名
    • 原创:1603篇
    • 转载:0篇
    • 译文:0篇
    • 评论:58条
    最新评论