题意:
我们定义d(a,b)为a通过乘除最少的素数到达b。比如d(15,50)=3,15*2*5/3=50。
我们定义3个操作和一个空的集合s:
I x表示在集合s里插入一个x,如果存在x,忽略这个操作。
D x表示在集合x里删除x,如果不存在x,忽略这个操作。
Q x找到最小的z集合里面存在一个y,使得d(x,y)=z。
数据范围:
总操作数q<=50000,x<=100000
d(x,y) = f(x/gcd(x,y)+f(y/gcd(x,y))
f(a)表示a质因子的个数 f数组进行预处理利用on素筛
对于插入操作,利用sqrt 的复杂度进行 把约数和 到达这个约数需要的步数加进去,利用multiset会比较快,
删除的时候反着来就好,
查询的时候 枚举i作为gcd(x,y) 利用最小的步数和相加,其实有点暴力的思想在里面
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
multiset<int> ss[N];
const int INF = 0x3f3f3f3f;
int vis[N],prime[N/10],num,cnt[N],mark[N];
void init()
{
int sum=0;
cnt[1]=0;
vis[1]=1;
for(int i=2;i<N;i++)
{
if(!vis[i]) prime[++num]=i,cnt[i]=1;
for(int j=1;j<=num&&prime[j]*i<N;j++)
{
vis[prime[j]*i]=1;
cnt[prime[j]*i]=cnt[i]+1;
if(i%prime[j]==0) break;
}
}
}
void del(int x,int y)
{
auto it=ss[x].find(cnt[y]);
if(it!=ss[x].end()) ss[x].erase(it);
}
int get(int x)
{
if(ss[x].empty()) return INF;
return *ss[x].begin();
}
int main()
{
int n;
init();
int cas=1;
while(~scanf("%d",&n)&&n)
{
memset(mark,0,sizeof(mark));
printf("Case #%d:\n",cas++ );
char op;
for(int i=1;i<N;i++) ss[i].clear();
int x;
int sum=0;
while(n--)
{
scanf(" %c %d",&op,&x);
if(op=='I')
{
if(mark[x]) continue;
mark[x]=1;
sum++;
int i;
for(i=1;i*i<x;i++)
if(x%i==0)
ss[i].insert(cnt[x/i]),
ss[x/i].insert(cnt[i]);
if(i*i==x) ss[i].insert(cnt[i]);
}
if(op=='D')
{
if(!mark[x]) continue;
mark[x]=0;
sum--;
int i;
for(i=1;i*i<x;i++)
if(x%i==0)
del(i,x/i),del(x/i,i);
if(i*i==x) del(i,i);
}
if(op=='Q')
{
int ans=INF;
int i;
if(sum==0) {
printf("-1\n");
continue;
}
for(i=1;i*i<x;i++){
if(x%i==0) ans=min(ans,min(get(i)+cnt[x/i],get(x/i)+cnt[i]));
}
if(i*i==x) ans=min(ans,get(i)+cnt[i]);
printf("%d\n",ans );
}
}
}
}