关闭

【JSOI2016】最佳团队

338人阅读 评论(0) 收藏 举报
分类:

Description

这里写图片描述

Input

这里写图片描述

Output

这里写图片描述

Sample Input

1 2
1000 1 0
1 1000 1

Sample Output

0.001

Data Constraint

这里写图片描述

分析

这种最大化形如x/y 的式子的题,很容易想到分数规划。
二分答案,对于当前的mid,设d[i]=p[i]-mid*s[i]
考虑到当一个节点i被选,那么fa[i]也要被选,那么一个想法是选取当前最大的d,然后把它的儿子的d放入堆里。
但是这个方法是错误的(然而我一开始就这么打了,只有10分)

题目给出的是一棵树,那么可以先dfs一遍,存下每个点的dfs序,然后设f[i][j]表示当前做到dfn为i的节点,选取了j个的最大和。设R[i]为节点i的子树中最大的dfn+1
转移有两种情况:
1. 选取i,设它原来的编号为x,那么f[i][j]+a[x]——>f[i+1][j+1]
2. 不选取i,那么f[i][j]——>f[R[i]][j] (这样就跳过了它的子树)

加上二分,时间复杂度为O(n2logans)

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

typedef double db;

const int maxn=2505;

const db z=1e-5,Inf=-1e20;

int m,n,tot,fa[maxn],h[maxn],e[maxn],next[maxn],dfn[maxn],R[maxn];

db d[maxn],s[maxn],p[maxn],f[maxn][maxn],l,r,mid,ans;

void add(int x,int y)
{
    e[++tot]=y; next[tot]=h[x]; h[x]=tot;
}

void init(int x)
{
    dfn[x]=tot++;
    for (int i=h[x];i;i=next[i]) init(e[i]);
    R[dfn[x]]=tot;
}

int main()
{
    scanf("%d%d",&m,&n);
    for (int i=1;i<=n;i++)
    {
        scanf("%lf%lf%d",&s[i],&p[i],&fa[i]);
        add(fa[i],i);
    }
    tot=0;
    init(0);
    for (l=0,r=1e4,mid=r/2;r-l>=z;mid=(l+r)/2)
    {
        for (int i=1;i<=n;i++)
        {
            d[dfn[i]]=p[i]-mid*s[i];
            for (int j=0;j<=m+1;j++) f[i][j]=Inf;
        }
        for (int j=0;j<=m+1;j++) f[n+1][j]=Inf;
        for (int i=0;i<=n;i++)
            for (int j=0;j<=min(i,m+1);j++)
            {
                if (f[i][j]+d[i]>f[i+1][j+1]) f[i+1][j+1]=f[i][j]+d[i];
                if (f[i][j]>f[R[i]][j]) f[R[i]][j]=f[i][j];
            }
        if (f[n+1][m+1]>=0) l=mid;else r=mid;
    }
    printf("%.3lf\n",mid);
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:41197次
    • 积分:2032
    • 等级:
    • 排名:第18866名
    • 原创:162篇
    • 转载:0篇
    • 译文:0篇
    • 评论:28条
    最新评论