关闭

51Nod 算法马拉松17 路径计数 莫比乌斯函数加暴力构图

665人阅读 评论(0) 收藏 举报
分类:

题目大意

现在定义路径上所有边权的最大公约数定义为一条路径的值。
现在给定一个N个点M条边有向无环图。进行T次修改操作,每次修改一条边的边权,每次修改后输出有向无环图上路径的值为1的路径数量(对109取模)。

N100
M50000
T500
100

解题思路

我们可以用莫比乌斯来做这题,设Fi为边权为i的倍数的路径的数量,最后答案就是100i=1Fimiui。那么考虑现在怎么得到F数组。

我们知道一个数的约数最多就只有根号个,而且这题的边权最大只有100,那么考虑建100幅图,在第i幅图统计Fi的答案。而对于一条边权为Aj连接u,v的边,假如Aj % k=0那么就在第k幅图的u,v连一条边。对于Fi就是第i幅图的路径条数。而修改只有500次,复杂度是OTmaxAiN。足以通过本题。

程序

//YxuanwKeith
#include <cstring>
#include <cstdio>
#include <algorithm>

using namespace std;

const int MAXN = 105, MAXM = 5e4 + 5;
const int Mo = 1e9 + 7;

struct Node {
    int u, v, w;
} Q[MAXM];

bool Flag[MAXN];
int N, M, Mu[MAXN], Fac[MAXN];
int tot[MAXN], Ans[MAXN];

struct Solve {
    int Map[MAXN][MAXN], Num[MAXN], Ord[MAXN], F[MAXN], Ans;

    void Get() {
        for (int i = 1; i <= N; i ++)
            for (int j = 1; j <= N; j ++) 
                Num[j] += Map[i][j];
        static int D[MAXN];
        int top = 0, p = 0;
        for (int i = 1; i <= N; i ++)
            if (!Num[i]) D[++ top] = i;
        while (top) {
            int Now = D[top --];
            Ord[++ p] = Now;
            for (int i = 1; i <= N; i ++) 
                if (Map[Now][i]) {
                    Num[i] -= Map[Now][i];
                    if (!Num[i]) D[++ top] = i;
                } 
        }
        Ans = 0;
        for (; p; p --) {
            int Now = Ord[p];
            F[Now] = 1;
            for (int i = 1; i <= N; i ++) 
                F[Now] = (F[Now] + Map[Now][i] * 1ll * F[i] % Mo) % Mo;
            Ans = (Ans + F[Now] - 1) % Mo;
        }
    }
} P[MAXN];

int Prep() {
    Mu[1] = 1;
    for (int i = 2; i < MAXN; i ++) {
        if (!Flag[i]) {
            Mu[i] = -1;
            Fac[++ Fac[0]] = i;
        }
        for (int j = 1; j <= Fac[0]; j ++) {
            if (1ll * i * Fac[j] >= MAXN) break;
            Flag[i * Fac[j]] = 1;
            if (i % Fac[j]) Mu[i * Fac[j]] = -Mu[i]; else {
                Mu[i * Fac[j]] = 0;
                break;
            }
        }
    }
}

int main() {
    scanf("%d%d", &N, &M);
    Prep();
    for (int i = 1; i <= M; i ++) 
        scanf("%d%d%d", &Q[i].u, &Q[i].v, &Q[i].w);
    for (int i = 1; i <= M; i ++) 
        for (int j = 1; j <= Q[i].w; j ++) 
            if (Q[i].w % j == 0 && Mu[j] != 0) P[j].Map[Q[i].u][Q[i].v] ++;
    int Ans = 0;
    for (int i = 1; i < MAXN; i ++) 
        if (Mu[i] != 0) {
            P[i].Get();
            Ans = ((Ans + P[i].Ans * 1ll * Mu[i]) % Mo + Mo) % Mo;
        }
    printf("%d\n", Ans);
    int C;
    scanf("%d\n", &C);
    for (int i = 1; i <= C; i ++) {
        int Ord, Val;
        scanf("%d%d", &Ord, &Val);
        memset(Flag, 0, sizeof Flag);
        for (int j = 1; j <= Q[Ord].w; j ++) 
            if (Q[Ord].w % j == 0 && Mu[j]) {
                P[j].Map[Q[Ord].u][Q[Ord].v] --;
                Flag[j] = 1;
            }
        Q[Ord].w = Val;
        for (int j = 1; j <= Q[Ord].w; j ++) 
            if (Q[Ord].w % j == 0 && Mu[j]) {
                P[j].Map[Q[Ord].u][Q[Ord].v] ++;
                Flag[j] = 1;
            }

        for (int j = 1; j < MAXN; j ++) 
            if (Mu[j] && Flag[j]) P[j].Get();
        Ans = 0;
        for (int j= 1; j < MAXN; j ++) 
            if (Mu[j]) Ans = ((Ans + P[j].Ans * Mu[j]) % Mo + Mo) % Mo; 
        printf("%d\n", Ans);
    }
}
2
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:115014次
    • 积分:2825
    • 等级:
    • 排名:第14231名
    • 原创:143篇
    • 转载:4篇
    • 译文:0篇
    • 评论:140条
    最新评论