母函数——整数拆分(HDOJ2152)

       最近看到了一些关于母函数的题目,去网上找了一些材料,加上自己的理解,现在可以解决一些简单的问题。那么什么是母函数?其实这个问题我也没有怎么搞懂,通过几个例子来说明一下。下面是转载的一个介绍 http://www.wutianqi.com/?p=596 大家可以在网上找到杭电ACM 课PPT,上面有更详细的介绍。

    在数学中,某个序列的母函数(Generating function,又称生成函数)是一种形式幂级数,其每一项的系数可以提供关于这个序列的信息。使用母函数解决问题的方法称为母函数方法

母函数可分为很多种,包括普通母函数指数母函数L级数贝尔级数狄利克雷级数。对每个序列都可以写出以上每个类型的一个母函数。构造母函数的目的一般是为了解决某个特定的问题,因此选用何种母函数视乎序列本身的特性和问题的类型。

 

 

这里先给出两句话,不懂的可以等看完这篇文章再回过头来看:

1.“把组合问题的加法法则和幂级数的乘幂对应起来”

2.“母函数的思想很简单 — 就是把离散数列和幂级数一 一对应起来,把离散数列间的相互结合关系对应成为幂级数间的运算关系,最后由幂级数形式来确定离散数列的构造. “

 

我们首先来看下这个多项式乘法:

母函数鈥斺斦鸱(HDOJ2152)

母函数图(1)

由此可以看出:

1.x的系数是a1,a2,…an 的单个组合的全体。

2. x^2的系数是a1,a2,…a2的两个组合的全体。

………

n. x^n的系数是a1,a2,….an的n个组合的全体(只有1个)。

 

进一步得到:

母函数鈥斺斦鸱(HDOJ2152)

母函数图(2)

 

母函数的定义

对于序列a0,a1,a2,…构造一函数:

母函数鈥斺斦鸱(HDOJ2152)

母函数图(3)

称函数G(x)是序列a0,a1,a2,…的母函数。

 

这里先给出2个例子,等会再结合题目分析:

 

第一种:

有1克、2克、3克、4克的砝码各一枚,能称出哪几种重量?每种重量各有几种可能方案?

考虑用母函数来解决这个问题:

我们假设x表示砝码,x的指数表示砝码的重量,这样:


1个1克的砝码可以用函数1+1*x^1表示,

1个2克的砝码可以用函数1+1*x^2表示,

1个3克的砝码可以用函数1+1*x^3表示,

1个4克的砝码可以用函数1+1*x^4表示,


上面这四个式子懂吗?

我们拿1+x^2来说,前面已经说过,x表示砝码,x的指数表示砝码的重量!初始状态时,这里就是一个质量为2的砝码。

那么前面的1表示什么?按照上面的理解,1其实应该写为:1*x^0,即1代表重量为2的砝码数量为0个。

所以这里1+1*x^2 = 1*x^0 + 1*x^2,即表示2克的砝码有两种状态,不取或取,不取则为1*x^0,取则为1*x^2

 

不知道大家理解没,我们这里结合前面那句话:

把组合问题的加法法则和幂级数的乘幂对应起来

 

接着讨论上面的1+x^2,这里x前面的系数有什么意义?

这里的系数表示状态数(方案数)

1+x^2,也就是1*x^0 + 1*x^2,也就是上面说的不取2克砝码,此时有1种状态;或者取2克砝码,此时也有1种状态。(分析!)

 

所以,前面说的那句话的意义大家可以理解了吧?

几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:

(1+x)(1+x^2)(1+x^3)(1+x^4)

=(1+x+x^2+x^4)(1+x^3+^4+x^7)

=1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10

从上面的函数知道:可称出从1克到10克,系数便是方案数。(!!!经典!!!)

例如右端有2^x^5 项,即称出5克的方案有2种:5=3+2=4+1;同样,6=1+2+3=4+2;10=1+2+3+4。

故称出6克的方案数有2种,称出10克的方案数有1种 。


接着上面,接下来是第二种情况:

 

第二种:

求用1分、2分、3分的邮票贴出不同数值的方案数:

大家把这种情况和第一种比较有何区别?第一种每种是一个,而这里每种是无限的。

母函数鈥斺斦鸱(HDOJ2152)

母函数图(4)

 

以展开后的x^4为例,其系数为4,即4拆分成1、2、3之和的拆分方案数为4;

即 :4=1+1+1+1=1+1+2=1+3=2+2

 

这里再引出两个概念"整数拆分"和"拆分数":

所谓整数拆分即把整数分解成若干整数的和(相当于把n个无区别的球放到n个无标志的盒子,盒子允许空,也允许放多于一个球)。

整数拆分成若干整数的和,办法不一,不同拆分法的总数叫做拆分数 

现在以上面的第二种情况每种种类个数无限为例,给出模板

#include 
using namespace std;
// Author: Tanky Woo
// www.wutianqi.com
const int _max = 10001; 
// c1是保存各项质量砝码可以组合的数目
// c2是中间量,保存没一次的情况
int c1[_max], c2[_max];   
int main()
{       //int n,i,j,k;
        int nNum;   // 
        int i, j, k;
 
        while(cin >> nNum)
        {
                for(i=0; i<=nNum; ++i)   // ---- ①
                {
                        c1[i] = 1;
                        c2[i] = 0;
                }
                for(i=2; i<=nNum; ++i)   // ----- ②
                {
 
                        for(j=0; j<=nNum; ++j)   // ----- ③
                                for(k=0; k+j<=nNum; k+=i)  // ---- ④
                                {
                                        c2[j+k] += c1[j];
                                }
                        for(j=0; j<=nNum; ++j)     // ---- ⑤
                        {
                                c1[j] = c2[j];
                                c2[j] = 0;
                        }
                }
                cout << c1[nNum] << endl;
        }
        return 0;
}
①  首先对c1初始化,由第一个表达式(1+x+x^2+..x^n)初始化,把质量从0到n的所有砝码都初始化为1.
②   i从2到n遍历,这里i就是指第i个表达式,上面给出的第二种母函数关系式里,每一个括号括起来的就是一个表达式。
③j 从0到n遍历,这里j就是(前面i個表达式累乘的表达式)里第j个变量。如(1+x)(1+x^2)(1+x^3),j先指示的是1和x的系数,i=2执行完之后变为
(1+x+x^2+x^3)(1+x^3),这时候j应该指示的是合并后的第一个括号的四个变量的系数。
④  k表示的是第j个指数,所以k每次增i(因为第i个表达式的增量是i)。
⑤  把c2的值赋给c1,而把c2初始化为0,因为c2每次是从一个表达式中开始的。

但是上面的内容我还是不怎么理解,看了下面这个例子终于搞明白了,那些循环是什么意思了

考虑N 式多项式:(1+x+x^2+x^3+x^4+x^5+....)*(1+x^2+x^4+x^6+x^8+x^10+....)*(1+x^3+x^6+x^9+x^12....).....(1+x^N + x^2N +....)

 本函数就是展开N式多项式,得到最后多项式的系数。

c1、c2存储多项式的系数,比如多项式1+x+x^2+x^3+x^4+x^5+....,c1[0]=1,c1[1]=1,...,表示x的多少次的系数为多少,如c2[3]=5,表示x的 3 次方的系数是5。

 c1保存最终的系数,c2保存当前相乘的2个多项式系数,如下:

 第一个多项式(1+x+x^2+...)[i=1],我们直接保存在c1中,即c1[0...n]=1,

 在上面保存的多项式(1+x+x^2+...)(1),与下一个括号(1+x^2+x^4+...)[i=2](2)相乘,模拟手工计算:

 一、(1)中的1[j=0]和(2)中的每项[k=0...n]相乘,得到1+x^2+x^4+...,在把x^0(1)和(1+x+x^2+...)合并同类项c1[0],即幂数相同的系数相加,

如x^2和(1+x+x^2+...)中的x^2系数相加,而(1+x+x^2+...)所有系数保存在c2数组中, 所以和c1[2]的值相加,

 x^4在和(1+x+x^2+...)的c1[4]值相加,这样一直下去一直到整数n,因为整数拆分方案数就是最后x^n的系数。

 二、(1)中的x[j=1]和(2)中的每项[k=0...n]相乘,得到x+x^3+x^5+...,在按照上面方法和c1合并相同幂的项,放到c2,比如x[j=1]和k[k=0]相乘,

 即x^1 * x^0 , 得到的系数j+k,x^k[k=0]是(2)式得到的,系数为1,但x[j=1]的系数是c1[j],所以 x^(j+k)的系数是c2中原来的系数+c1[j]的值,因x^k系数为1,忽略。

 三、这样循环下去,即可把(1+x+x^2+...)(1),(1+x^2+x^4+...)[i=2](2)展开,且各指数的系数放在c2中。在把c2中的系数放到c1中,计算与第三个式子展开(1+x^3+x^6+...)。

  依次类推,一直到n


再给出一个例子:http://acm.hdu.edu.cn/showproblem.php?pid=2152

题目的意思很好理解,从N 种水果中选出 M 个来,每种水果有个数限制,假设第i种水果最少和最多分别用fruit[i][min]和fruit[i][max]表示,那么第i种水果数 num[i] 则要满足条件 fruit[i][min] <= num[i] <= fruit[i][max]
母函数的形式 g(x) = ( 1 + x^fruit[1][min] + x^fruit[i][min]+1 +...+x^fruit[1][max])(1+x^fruit[2][min]+...+fruit[2][max])...(1+x^fruit[N][min] +...+fruit[N][max])
#include<iostream>

using namespace std;
#define SIZE 10010
int c1[SIZE],c2[SIZE]; // 保存多项式的系数
int fruit[102][2]; // 保存每一种水果的上下界
int main(){
    int N,M;
    while( cin >> N >> M){
        for(int i = 1;i<=N; i++){
            cin >> fruit[i][0] >> fruit[i][1];
        }
        memset(c1,0,sizeof(c1));
        memset(c2,0,sizeof(c2));
        for( int i = fruit[1][0]; i<= fruit[1][1]; i++){
            c1[i] = 1; c2[i] = 0; //初始化第一个多项式的系数
        }
        for( int i = 2; i<= N; i++){  //对于第 i 个多项式
            for( int j = 0; j<= M; j++)       // 结果多项式中每一项的系数
                for( int k = fruit[i][0]; k<=fruit[i][1] && k+ j<= M; k++)
                    c2[j+k] += c1[j]; //第 i 个多项式中的 第k 个因式 
            for( int j =0;j<=M; j++){
                c1[j] = c2[j];c2[j] = 0;
            }
        }
        cout << c1[M] <<endl;
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值