离散复习资料之一(Fleury算法)

本文介绍了Fleury算法用于寻找图的欧拉回路,详细阐述了算法步骤和关键概念——桥。解释了桥的定义及其在算法中的重要性,并通过示例解析了错误的回路选择问题,帮助理解欧拉回路的构建条件。
摘要由CSDN通过智能技术生成

目录

学习引言:

Fleury算法步骤如下:

Fleury算法 个人解析:

重要概念_知识引入: 桥 

关于桥的样例解析:

桥 解析:

桥 另一方面的解析:

总结:


学习引言:

       下面介绍一下:“什么叫做欧拉回路?”

       欧拉回路:有一条路从开始的位置到结束的位置都是同一个位置,经过了所有的点且通过了所有的边,通过的次数只能一次。比如著名的“哥尼斯堡七桥问题”

       欧拉路:在欧拉回路的基础上面改一个条件。就是有一条路使得从开始的位置到结束的位置不是一个位置。

       总结:具有一条经过所有边的简单回路,称欧拉回路,含欧拉回路的图称为欧拉图;如果图G中具有一条经过所有边的简单(非回路)路径,称欧拉路!

       欧拉回路和欧拉路也有一个充分的判断条件。

       欧拉回路:每一个结点都是偶结点。欧拉路:存在两个结点是奇结点。其余的是偶结点。

 

Fleury算法步骤如下:

         1.任取Vo属于V(G),令Po = Vo 2.设Pi = Voe1V1e2.....eiVi, 

         如果E(G)-{e1,e2,...ei}中没有与Vi关联的边,则计算停止;

         否则按下述的条件从E(G)-{e1,e2,e3...ei}中任取一条边ei+1;

                  (a)ei+1与vi相关联。

                  (b)除非无别的边可供选择,否则ei+1不应该选择Gi = G-{e1,e2,e3...ei}中的桥。

          设ei+1=(Vi,Vi+1),把ei+1Vi+1加入Pi,

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值