关闭

ACM3-1014

42人阅读 评论(0) 收藏 举报
分类:

Problem N

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 98   Accepted Submission(s) : 69
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。<br><img src=../data/images/C40-1008-1.jpg>
 

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。<br><br>
 

Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。<br><br>
 

Sample Input
2 1 2
 

Sample Output
2 7
 

解题思路:1递推递推,先分析下直线分割平面的情况,增加第n条直线的时候,跟之前的直线最多有n-1个交点,此时分出的部分多出了

      (n-1)+1;

     2折线也是同理,f(1)=2,f(2)=7,先画好前面n-1条折线,当增加第n条拆线时,此时与图形新的交点最多有2*2(n-1)个,所以分出的部分多出了2*2(n-1)+1   所以推出f(n)=f(n-1)+4*(n-1)+1,n>=3

 

#include <stdio.h>
int main()
{
    int n,i,k,j;
    __int64 a[10010];
    scanf("%d",&n);
    for(i=1;i<=n;i++)
    {
        scanf("%d",&k);
        a[1]=2;
        for(j=2;j<=k;j++)
            a[j]=a[j-1]+4*(j-1)+1;
        printf("%I64d/n",a[k]);
    }
}   

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:2170次
    • 积分:424
    • 等级:
    • 排名:千里之外
    • 原创:42篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类