自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(464)
  • 收藏
  • 关注

原创 【LeetCode】三角形的最大周长

题目链接:https://leetcode-cn.com/problems/largest-perimeter-triangle/给定由一些正数(代表长度)组成的数组 A,返回由其中三个长度组成的、面积不为零的三角形的最大周长。如果不能形成任何面积不为零的三角形,返回0。示例 1:输入:[2,1,2]输出:5示例 2:输入:[1,2,1]输出:0示例 3:输入:[3,2,3,4]输出:10示例 4:输入:[3,6,2,3]输出:8提示:3 <...

2020-11-29 20:42:32 3

原创 【LeetCode】两数相加

给出两个非空 的链表用来表示两个非负的整数。其中,它们各自的位数是按照逆序的方式存储的,并且它们的每个节点只能存储一位数字。如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和。您可以假设除了数字 0 之外,这两个数都不会以 0开头。示例:输入:(2 -> 4 -> 3) + (5 -> 6 -> 4)输出:7 -> 0 -> 8原因:342 + 465 = 807/** * Definition for singly-...

2020-11-26 21:42:01 25 1

原创 【论文笔记】BlockFLA: Accountable Federated Learning via Hybrid Blockchain Architecture

0. 关键词混合区块链、超链、以太坊、机器学习、后门攻击、联邦学习、联邦平均1. 摘要隐藏训练数据使攻击者有机会向训练好的模型注入后门攻击。很多研究试图通过设计健壮的聚合函数来减轻后门攻击的威胁,作者从一个互补的角度来研究这个问题——目标使通过检测和惩罚攻击来阻止后门攻击。为此,作者开发了一个基于区块链的混合FL框架,该框架使用智能合约来自动检测并通过罚款来惩罚攻击者。文章设计的框架是通用的,任何聚合函数和任何攻击者检测算法都可以插入其中。作者进行了实验来证明框架的通信效率,并提供了实验结果来说

2020-11-25 22:27:05 273 3

原创 【答案】学堂在线/雨课堂《自然辩证法概论》 答案

绪论第1 节1、以下哪项不是自然辩证法的特点()A综合性B交叉性C复杂性D哲理性正确答案: C2、自然辩证法的重要理论基石是()A马克思主义自然观B马克思主义科学技术观C马克思主义科学技术方法论D马克思主义科学技术社会论正确答案: ABCD(少选不得分)3、马克思主义自然观的思想渊源()A朴素唯物主义自然观B机械唯物主义自然观C系统自然观D人工自然观正确答案: AB(少选不得分)4、以下哪一项不是马克思主义自然观的当代形态()A系统自然观B人工自然观C生态自然观

2020-11-24 20:18:26 988

原创 【答案】《自然辩证法概论》 期末答案

1.判断题(1分)自然辩证法是马克思主义关于自然和科学技术发展的一般规律、人类认识和改造自然的一般方法以及科学技术与人类社会相互作用的一般原理的学说。正确答案:正确2.判断题(1分)自然辩证法是一门自然科学、社会科学与思维科学相交叉的哲学性质的马克思主义理论学科。正确答案:正确3.判断题(1分)自然辩证法源于中国的科学技术哲学并在学科建制上具有先后的承继关系,两者都以科学技术为研究对象和内容。正确答案:错误4.判断题(1分)马克思主义科学技...

2020-11-24 20:13:54 96

原创 【联邦学习】读书笔记(二) 隐私保护技术

本文的隐私保护技术,包括三种方法。安全多方计算 同态加密 差分隐私1.安全多方计算安全多方计算最初是针对一个安全两方计算问题,即所谓的“百万富翁问题”被提出的,并于1982年有姚期智提出和推广。安全多方计算允许我们计算私有输入值的函数,从而使每一方只能得到其相应的函数输出值,而不能得到其他方的输入值与输出值。安全多方计算能够通过三种不同的框架来实现:不经意传输(Oblivious Transfer,OT) 秘密共享(Secret Sharing,SS) 阈值同态加密(Th.

2020-11-22 19:54:21 964 3

原创 【LeetCode】两数之和 [两种解法]

题目链接:https://leetcode-cn.com/problems/two-sum/题目描述:给定一个整数数组nums和一个目标值target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。示例:给定 nums = [2, 7, 11, 15], target = 9因为 nums[0] + nums[1] = 2 + 7 = 9所以返回 [0, 1]题解:...

2020-11-20 22:44:14 149 1

原创 【论文】联邦学习&区块链 论文集(三)

21. Privacy-Preserving Blockchain Based Federated Learning with Differential Data Sharing (论述科普性文章)关键词:区块链技术、差分隐私、以太坊、加密、联邦学习、激励学习、物联网、可扩展、安全主要贡献:1)介绍数据隐私;2)介绍联邦学习3)介绍区块链、介绍BFL;4)介绍联邦学习在IOT中的应用。arXiv:1912.04859 [cs.CR]22. When Federated Learning

2020-11-20 14:34:02 184

原创 【论文】联邦学习&区块链 论文集(二)

11. Blockchain-based Federated Learning for Failure Detection in Industrial IoT关键词:区块链、联邦学习、机器学习、边缘计算、物联网、失败主要贡献:1)一种平台体系结构,提供系统交互的系统视图,并作为IIoT故障检测中基于区块链的联邦学习系统的设计指南。架构设计涉及以下架构设计决策:模型培训的安排、监控客户数据的存储、客户的激励机制以及区块链的部署。2)一种称为质心距离加权联邦平均(CDW FedAvg)的联邦平均算法,

2020-11-20 14:32:57 130

原创 【论文】联邦学习&区块链 论文集(一)

1. Blockchained On-Device Federated Learning关键词:联邦学习、区块链、延迟分析主要贡献:1)用区块链网络来代替中央服务器;2)提供验证和相应的激励机制3)研究BlockFL端到端学习完成延迟, 通过调整块生成率来使延迟最小化2. Decentralized Privacy Using Blockchain-Enabled Federated Learning in Fog Computing关键词:区块链、联邦学习、雾计算、隐私保护主要贡献:

2020-11-20 14:31:26 79

原创 区块链与联邦学习的研究

本文分别介绍了区块链与联邦学习的研究现状、架构和运行原理、主要技术及局限性,并针对区块链与联邦学习所存在的问题,通过分析区块链与联邦学习各自的特点,探讨了如何将区块链与联邦学习进行融合互补,介绍了两种融合模型及其应用场景。1区块链概述1.1 区块链的研究现状2008年10月,化名为“中本聪”的学者在密码学论坛上公开了《比特币:一种点对点的电子现金系统》一文[1],提出了利用PoW和时间戳机制构造交易区块的链式结构,剔除了可信第三方,实现了去中心化的匿名支付。比特币于2009年1月上线并发布创世块,.

2020-11-16 16:20:38 479

原创 【联邦学习】读书笔记(二) 隐私、安全及机器学习

1、面向隐私保护的机器学习英文名:PPML:Privacy-Preserving Machine Learning2、面向隐私保护的机器学习及安全机器学习在机器学习中,敌手被假设违反了机器学习系统的完整性和可用性。在PPML中,敌手被假设违反了机器学习系统的隐私性和机密性。1. 完整性。对完整性的攻击可能导致机器学习系统会出现检测错误。2. 可用性。对可用性的攻击可能导致系统会出现分类错误。3. 机密性。对机密性的攻击可能导致一些机器学习系统的敏感信息(如训练数据或训练模.

2020-11-13 23:06:00 110

转载 【联邦学习】杨强教授联邦学习公开课视频及问答整理

​4月13日,咱们微众银行首席人工智能官杨强教授也做客雷锋网,结合最新发布的《联邦学习白皮书v2.0》,对联邦学习研究与应用价值展开了最前沿的讨论和分享。这是雷锋网《金融联邦学习公开课》第一期。这一系列课程将为金融界和人工智能界,输出最前沿、最具实用价值的联邦学习线上系列课。作为当前人工智能尤其是AI金融领域,最受工业界和学术界关注的研究方向之一。联邦学习有哪些前沿研究与应用?欢迎戳下方视频回顾精彩回放,同时直播PPT内容也上传到了我们公众号【FATE开源社区】(戳我前往查看PPT课件)视频链接h.

2020-11-09 17:44:00 100

原创 【笔记】《Federated Learning With Blockchain for Autonomous Vehicles Analysis and Design Challenges》精读笔记

论文信息DOI:10.1109/TCOMM.2020.2990686目录1.摘要2.背景3.本文贡献4.BFL模型详述4.1 模型概述4.2模型问题与解决4.3 两个算法5.BFL块到达过程6.延迟最小化7.结论8.未来潜在研究方向1.摘要作者提出了基于区块链的联邦学习(BFL),用于隐私感知和高效的车辆通信网络。其中自动驾驶车辆车载机器学习(oVML)模型更新以分布式进行交换和验证。(与相邻车辆进行数据交易) 奖励机制...

2020-11-09 14:54:02 78

原创 【联邦学习】读书笔记(一)基础概念

0、前言1.联邦学习的动机(1)保护用户隐私和数据安全。(2)最大化地利用云系统下终端设备地计算能力。2.FL模式(1)B2C。如Google地Gboard系统。它也能支持边缘计算,云系统地终端(边缘)设备可以处理许多计算任务,从而减少了通过原始数据与中央服务器通信地需要。(2)B2B。多个组织联合起来搭建一个共享地机器学习模型。3.FL需要多个学科领域地合作。机器学习算法、分布式机器学习、密码学与安全、隐私保护数据挖掘、博弈论与经济学原理、激励机制设计、法律与监管要求。

2020-10-27 22:39:19 84 1

原创 Ubuntu 使用命令向QQ邮箱发送邮件

1、安装heirloom-mailxsudo apt-get install heirloom-mailx2. 修改/etc/s-nail.rc中来添加外部SMTP服务器如下:这是个只读文件,先改权限: sudo chmod 777 /etc/s-nail.rc在普通用户下执行:vim /etc/s-nail.rc在文件最后加上:【把××××××××××换成你的邮箱地址】set from=××××××××××@qq.comset smtp=smtps://s

2020-10-21 15:48:02 133

原创 【Linux】账户信息 / 口令信息 文件

命令查看方式:进入root: su root查看账户信息文件:vim /etc/shadow查看口令信息文件:vim /etc/password

2020-10-11 19:42:00 111

原创 【论文笔记】《FLchain: Federated Learning via MEC-enabled Blockchain Network》精读笔记

Information of the paper:DOI:10.23919/APNOMS.2019.8892848目录1. Abstract2. Preliminaries and Definitions2.1 Channel2.2 Global Model State Trie3. System Model3.The Operation of FLchain3.1FLchain过程3.2 Transaction Pool3.3 Global Mo...

2020-10-07 23:06:32 238 2

转载 【论文】核心计算机科学会议排名

CORE Computer Science Conference RankingsAcronym Standard Name Rank AAAI National Conference of the American Association for Artificial Intelligence A+ AAMAS International Conference on Autonomous Agents and Multiagent Systems A+

2020-10-06 21:33:08 886

原创 【论文】几篇论文核心思想概述

1.《Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT》在本文中,作者提出了一种基于许可区块链的不同私有的多方数据模型共享方法。我们没有直接共享原始数据,而是结合了联邦学习算法,将原始数据映射到相应的数据模型中,通过由本地用户进行分布式培训,解决了学习阶段的隐私问题。我们还设计了一个基于区块链的分布式数据共享体系结构,使区块链能够保证数据的检索,并保证模型的精确训练。本文中的主要贡

2020-10-05 21:24:12 210 1

原创 【论文笔记】《Blockchained On-Device Federated Learning》精读笔记

1.INTRODUCTION传统的联邦学习主要有以下局限性:(1)依赖单一的中央服务器,容易受到服务器故障的影响;(2)没有合适的奖励机制来刺激用户提供数据训练和上传模型参数。对此,作者提出了【基于区块链的区块链联邦学习(BlockFL)】:(1)用区块链网络来代替中央服务器,区块链网络允许交换设备的本地模型更新;(2)加入验证和提供相应的奖励机制。加入区块链之后,还要考虑延迟问题,因为越高的延迟会导致越多的forking现象。造成延迟的原因主要有以下几个:comp

2020-09-28 22:41:28 544

原创 【论文】论文搜集+摘要翻译

1.【Blockchained On-Device Federated Learning】通过利用区块链,这封信提出了一种区块链联合学习(BlockFL)架构,在该架构中可以交换和验证本地学习模型更新。通过利用区块链中的共识机制,这使得无需任何集中训练数据或协调即可进行设备上机器学习。此外,我们分析了BlockFL的端到端延迟模型,并通过考虑通信,计算和共识延迟来描述最佳块生成速率。2.【Decentralized Privacy Using Blockchain-Enabled Federa.

2020-09-19 16:26:02 430 1

转载 【联邦学习+区块链】联邦学习与区块链

前言:联邦学习(Federated Learning)是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算节点之间开展高效率的机器学习的一种新兴人工智能基础技术,与分布式机器学习不同的是联邦学习需要一种去中心化分布系统来保证用户的隐私安全,在保障数据安全和交换、训练效率前提下进行有效的机器学习。区块链作为一个去中心化、数据加密、不可篡改的分布式共享数据库,可以为联邦学习的数据交换提供数据保密性来对用户隐私进行保障,保证各参与方之间的数据安全,也可以保证多参与方

2020-09-17 17:03:14 663 1

原创 【联邦学习+区块链】《联邦学习vs区块链:谁是“可信媒介”技术领域最强王者?》疑问解答

联邦学习【1】VS 区块链【问1】联邦学习,何为“联邦”?作为一种分布式机器学习技术,联邦学习可以实现各个企业的自有数据不出本地,而是通过加密机制下的参数交换方式共建模型,即在不违反数据隐私法规的情况下,建立一个虚拟的共有模型。由于数据本身不移动,因此也不会涉及隐私泄露和数据合规问题。这样,建好的模型将在各自的区域仅为本地的目标服务。在这样一个联邦机制下,参与各方可以在不披露底层数据和底层数据的加密(混淆)形态下共建模型,各个参与者的身份和地位相同,这就是为什么这个体系叫做联邦学习。举例来说,

2020-09-16 22:39:00 1038 1

转载 【联邦学习 + 区块链】《联邦学习vs区块链:谁是“可信媒介”技术领域最强王者?》阅读记录与提问

题目:《联邦【1】学习vs区块链:谁是“可信媒介”技术领域最强王者?》【问1】联邦学习,何为“联邦”?在互联网新浪潮中,联邦学习和区块链是最受关注的两项热门技术。联邦学习【注】是一种在大数据服务中保护隐私的分布式机器学习技术,区块链是一种在去中心化网络中实现价值转移的分布式账本技术。那么问题来了,谁是可信媒介技术领域最强王者?【注】另有文章说“联邦学习的作用主要是用来解决数据孤岛”。继续延伸:什么是“数据孤岛”?【文章出处】什么是联邦学习(https://zhuanlan.zhih

2020-09-11 22:12:47 366 1

原创 【深度学习 理论】Recurrent Neural Network (RNN) - 2

给一个Training Sentences,RNN做出了如下分类。我们把”arrive“丢到RNN中,它的y1的reference vector属于”other“ slot。这个reference vector的长度就是slot的个数(属于哪个slot,哪个维度就是1,其余0)。RNN在Learning时如何定义loss function呢?以slot filling 为例,对每个输入, 其输出的与相应的reference vector计算cross entropy, cross entrop.

2020-09-09 22:23:37 133

原创 【深度学习 理论】Recurrent Neural Network (RNN) - 1

1.RNN先举一个例子:Slot FillingTipei属于目的地slot,November 2nd 属于时间slot。假设把地点和时间作为输入,我们把一个word用一个vector表示,把这个vector丢到network中,输出是这个word属于每一个slot的几率。但是,只是这样是不够的,像下面这个例子,机器不知道在November 2nd是要到达Taipei还是离开Taipei。我们就希望neural network有记忆力,他记得在看到红色的Taipei之.

2020-08-22 16:58:19 350

原创 【深度学习 理论】Convolutional Neural Network

目录0.Instruction1.Convolution2.Max Pooling3.Flatten4.CNN in Keras5.What does CNN learn? (1)Filter做什么? (2)neuron做什么? (3)CNN输出是什么?0.InstructionCNN是处理图像的的network。做图像处理,常规的Fully connected network也可以做。但是会有特别多的参数(例如:100*100的iam...

2020-08-20 01:40:46 277

原创 【深度学习 理论】Tips for Deep Learning-2

当训练集效果好但测试集效果差时,有以下解决办法:1.Early Stopping理想情况下,Learning rate和Loss会越来越小。early stopping是搞一个Validation Set,当模型在验证集上的误差比上一次训练结果差的时候停止训练。2.Regularization(正则化)重新定义去minimized的Loss Function。但这个方法对训练效果的改善并步显著。正则化不一定只能用L2正则化,也可以用L1正则化。使用L.

2020-08-17 23:34:47 290

原创 【深度学习 理论】Tips for Deep Learning-1

一、Recipe of Deep LearningDL训练完后,要先在训练集上测试,如果训练集的测试结果不好,就要回去进行修改。如果在训练集上的测试结果较好,那么再去测试集上测试效果。如果结果不好的话,是overfitting,这个时候要解决过拟合的问题。不要看到训练结果就认为是overfitting,如果都按照是overfitting去直接通过调整model的话,你的model的效果可能会更差。下面这个例子,就不是overfitting的问题。看到这个图,56层的神经网络

2020-08-16 23:25:21 305

原创 【深度学习 理论】Backpropagation

这节讲的实质上是 使用Gradient Descent实现Neural Network时是真么做的。Gradient Descent的过程之前的帖子已写,这里不再赘余。但是这种逐个求偏微分的方法效率太低了,试想一下如果一个Neural Network有七八层,每层1000个neuron,那就有上百万个参数,计算起来时相当困难且费时的。Backpropagation并不是区别于Gradient Descent的一种训练方法,它只是一种有效的训练Gradient Descent的算法。.

2020-08-13 22:56:35 311

原创 【深度学习 理论】Brief Introduction of Deep Learning

一、前序深度学习的应用场景很多,不再叙述。罗列一下深度学习的发展历史:二、Fully Connect Feedforward Network神经网络就是一个Function,输入和输出都是矩阵。一个神经网络的结构可以称为一个“Function Set”。第一层称为“Input Layer”,最后一层称为“Output Layer”,中间的层称为“Hidden Layer”。【注】:输入的向量维度与输出的向量维度不一定相等。深度学习的“Deep”就是“Many

2020-08-13 21:48:51 310

原创 【深度学习 理论】Logistic Regression

一、首先介绍Logistic的过程。step 1:Function Set:不同的w、b,决定不同的FunctionStep 2: Goodness of a Function????∗,????∗就是使L(w,b)最大化的一组,????。取对数,化简。划线部分是“两个伯努利分布之间的交叉熵”。Step 3: Find the best function求红框中式子分别求偏微分,来找最好的function。带入

2020-08-12 23:49:22 368

原创 【深度学习 理论】Classification

1.分类的应用信用评分、医疗诊断、手写字体识别、人脸识别……分类就是输入参数,通过某种模型计算后,输出所属类别:仍然用“pokemom”的例子,每只宝可梦有6个参数,下面是皮卡丘的参数值:2.Ideal Alternatives3.How to do Classification用一次线性分类比较容易实现,但是特殊数据集会使结果产生error:通过在两个盒子中摸球的例子,考虑二分类思想。先只考虑宝可梦的两个特征。...

2020-08-12 14:56:05 357

原创 【深度学习 理论】Gradient Descent_1-2

这上篇:https://blog.csdn.net/Aibiabcheng/article/details/107430209Tip 2: Stochastic Gradient Descent 误差Loss是所有预测值与真实值之间误差之和。与Adagrad不同,随机梯度下降,是取一个样本Xn(可以随机取,也可以按顺序取),计算Loss值(下面公式),然后计算梯度。原来的G...

2020-07-20 17:45:27 384

原创 【深度学习 理论】Gradient Descent_1-1
原力计划

首先简单介绍一下【梯度】和【梯度下降】的概念。梯度:对于可微的数量场,以为分量的向量场称为的梯度或斜量。简单的说,梯度就是导数(对于多维就是偏导数)。梯度下降法(gradient descent)是一个最优化算法,常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。梯度下降包含两个意思:一是根据梯度的符号来判断最小值点在哪;二是让函数值变小。梯度下降作用是找到函数的最小值所对应的自变量的值.

2020-07-18 23:25:10 418

原创 【交叉/综合/新兴】 2019年-中国计算机学会推荐国际学术会议和期刊目录(十)

1.中国计算机学会推荐国际【学术期刊】交叉/综合/新兴(1)A类序号 刊物简称 刊物全称 出版社 网址 1 TOCS ACM Transactions on Computer Systems ACM http://dblp.uni-trier.de/db/journals/tocs/ 2 (2)B类序号 刊物简称 刊物全称 出版社 网址 1 TACO ...

2020-07-12 13:31:40 1145

原创 【人机交互与普适计算】 2019年-中国计算机学会推荐国际学术会议和期刊目录(九)

1.中国计算机学会推荐国际【学术期刊】数据库/数据挖掘/内容检索(1)A类序号 刊物简称 刊物全称 出版社 网址 1 TOCS ACM Transactions on Computer Systems ACM http://dblp.uni-trier.de/db/journals/tocs/ 2 3 4 ...

2020-07-12 12:49:20 751

原创 【人工智能】 2019年-中国计算机学会推荐国际学术会议和期刊目录(八)

1.中国计算机学会推荐国际【学术期刊】人工智能(1)A类序号 刊物简称 刊物全称 出版社 网址 1 TOCS ACM Transactions on Computer Systems ACM http://dblp.uni-trier.de/db/journals/tocs/ 2 3 4 (2)B类序号...

2020-07-11 22:28:17 781

原创 【计算机图形学与多媒体】 2019年-中国计算机学会推荐国际学术会议和期刊目录(七)

1.中国计算机学会推荐国际【学术期刊】计算机图形学与多媒体(1)A类序号 刊物简称 刊物全称 出版社 网址 1 TOCS ACM Transactions on Computer Systems ACM http://dblp.uni-trier.de/db/journals/tocs/ 2 3 (2)B类序号 刊物简称 刊物全称 ...

2020-07-11 21:34:35 755

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除