tensorflow学习笔记
风之清扬
拥抱生活,拥抱创新,每天学点新知识,积少成多,努力进取!
展开
-
Windows环境下安装Tensorflow
好消息,Google开源的Tensorflow框架终于可以支持Windows平台了!这是对广大windows系统用户是多么美妙的一件事!下面讲解如何安装Tensorflow(Windows版)。 首先,你得先安装python;这里我直接使用的是Anaconda,这就省得自己再去安装好多包。 其次,打开控制台命令窗口:输入pip install tensorflow,原创 2016-12-26 19:59:20 · 9382 阅读 · 2 评论 -
tensoflow练习5:自动编码器练习
自动编码器是一种比较好理解的神经网络结构。它是一种无监督的学习特征方法(从自己到自己)。下面以一个例子来介绍。使用的数据集:[数据集](https://archive.ics.uci.edu/ml/machine-learning-databases/00310/),下载后进行解压。首先给出完整代码:#coding=utf-8#用sklearn对数据集进行处理import tensorfl原创 2017-08-10 19:42:35 · 649 阅读 · 0 评论 -
tensoflow练习2:利用Recurrent Neural Network 进行分类
快一周没写博客了,总觉得缺少点什么。最近忙着写论文、改论文也没什么时间写。好了,不废话了,直接上干货,利用RNN进行分类。RNN主要用于序列数据的处理,在图像、语音、文本等领域有着广泛的应用。这里使用RNN对手写体进行识别(0-9共10类)。 代码如下:#coding=utf-8import tensorflow as tfimport numpy as numpyfrom tensorfl原创 2017-07-28 16:53:21 · 729 阅读 · 2 评论 -
tensoflow练习3:卷积神经网络用于分类
再次利用卷积神经网络对手写体进行识别;卷积神经网络是一种非常强大的神经网络模型(可应用于图像识别,语音处理等领域)。下面将给出源码:#coding = utf-8import tensorflow as tfimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_datamnist = input_dat原创 2017-07-28 21:48:50 · 1416 阅读 · 0 评论 -
tensorflow练习9:图像分类器
这一节继续使用谷歌的image_retain作为模型进行训练。下载文件: https://github.com/tensorflow/tensorflow。 使用examples中的image_retraining进行训练: 运行命令:python tensorflow/tensorflow/examples/image_retraining/retrain.py --bottleneck_d原创 2017-09-04 20:06:38 · 3100 阅读 · 0 评论 -
tensorflow练习10:判断男声女声
本节内容训练一个简单的神经网络模型,用来判断声音是男是女;这是一个简单的神经网络分类实例。 数据集字段:声音属性与标签; 具体代码如下:#coding=utf-8import osimport requestsimport pandas as pdimport numpy as npimport randomimport tensorflow as tffrom sklearn.c原创 2017-09-04 21:55:43 · 2226 阅读 · 5 评论 -
tensoflow练习6:RNN应用--生成诗词
RNN是一种非常强大的神经网络模型,它的输入输出都是一个向量序列。RNN就是为了序列数据建模而产生的,广泛的应用在视频、图像以及文本序列中。这里我们将介绍一个简单的RNN应用实例–RNN生成古诗词。 数据集:poetry.txt 1.训练文件 train.py# -*- coding: utf-8 -*-import collectionsimport tensorflow as tfim原创 2017-08-27 19:04:47 · 2387 阅读 · 6 评论 -
tensoflow练习7:生成图片
Google把自家生成图片的技术 Inceptionism 开源化,称之为 Deep Dream ,一个原本用来将图片分类的AI,让我们看到不一样的世界~在把一张图片喂入之后,选择某一层神经网路(Google 的神经网路有 10-30 层)进行重复处理的次数和变形的程度,就能获得一张非常后现代的「画作」。 数据集: 1)https://pan.baidu.com/s/1kVSA8z9 (密码:原创 2017-09-03 12:38:04 · 979 阅读 · 0 评论 -
tensorflow练习8:实现Google的Deep Dream
Google把自家生成图片的技术 Inceptionism 开源化,称之为 Deep Dream ,一个原本用来将图片分类的AI,让我们看到不一样的世界~在把一张图片喂入之后,选择某一层神经网路(Google 的神经网luo有 10-30 层)进行重复处理的次数和变形的程度,就能获得一张非常后现代的「画作」。 1)下载模型,解压。 下载模型,解压 2)加载预训练的模型,训练。#coding=u原创 2017-09-03 12:52:45 · 849 阅读 · 0 评论 -
tensorflow练习11:语音识别程序
找工作的事情暂时告一段落,感觉还需要不断提升自己,不说多少了,直接步入正题。 语音识别是人机交互、人工智能等领域必不可少的一个研究领域,下面就以该例为标准。 使用的数据集:THCHS30(Dong Wang, Xuewei Zhang, Zhiyong Zhang发布的开放语音数据集); 地址: 语音文件:http://data.cslt.org/thchs30/zip/wav.tgz原创 2017-11-17 21:04:47 · 16248 阅读 · 35 评论 -
tensorflow聊天机器人后续
先前博客一文中曾经用tensorflow0.12打造过聊天机器人。最近由于tensorflow版本的快速更新,并且对以前版本的不兼容性,这里将tensorflow聊天机器人中的seq2seq_model.py和seq2seq.py代码进行修改。 tensorlow1.41)修改seq2seq_model.py:# Copyright 2015 The TensorFlow Authors. All原创 2017-11-27 19:27:13 · 2129 阅读 · 9 评论 -
tensorflow练习12:利用图片预测年龄与性别
深度学习在图像分类领域已经取得长足地进展,以下以一个有趣的例子来学习图像分类算法。 训练数据:人脸数据集(链接: https://pan.baidu.com/s/1gf4FQD1 密码: ddkx) 环境:tensorflow,python3.5 1)加载数据集并对数据进行处理age_table = ['(0, 2)', '(4, 6)', '(8, 12)', '(15, 20)', '(2原创 2017-11-22 16:46:32 · 6891 阅读 · 7 评论 -
tensorflow4:创建一个简单的强化学习游戏
Deep Q Network是DeepMind最早(2013年)提出来的,是深度强化学习方法。最开始AI什么也不会,通过给它提供游戏界面像素和分数,慢慢把它训练成游戏高手。这里首先给出一个基本的游戏例子,然后再给出强化学习方法。 1.基本游戏#coding=utf-8import pygamefrom pygame.locals import *import sysBLACK =(0,0,原创 2017-07-31 10:45:18 · 5853 阅读 · 7 评论 -
tensorflow练习1:利用神经网络进行分类
TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,它可在小到手机、大到数千台服务器上运行。前段时间在做有关情感分类的实验,利用了神经网络对数据进行分类;效果还不错,达到80+%。 数据集来源:评论数据集,中文的,很不容易,感谢作者! pos数据 neg数据数据处理:import randomdef loadfile(): neg = pd.read_excel('原创 2017-07-21 22:57:39 · 2094 阅读 · 0 评论 -
tensorflow基础(1)变量的创建、初始化、保存与加载
废话就不多说了,直接上干货。 1.变量的创建 tensoflow创建变量使用tf.Variable();需要指明变量的形状b = tf.Variable(tf.zeros([1]))W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))如这里的w,b就是所要创建的变量。2.初始化 变量的初始化,需要在变量操作运行前执行。# 初始化变量in原创 2017-07-21 21:31:46 · 1362 阅读 · 1 评论 -
利用tensorflow制作一个简单的聊天机器人
现在很多卖货公司都使用聊天机器人充当客服人员,许多科技巨头也纷纷推出各自的聊天助手,如苹果Siri、Google Now、Amazon Alexa、微软小冰等等。前不久有一个视频比较了Google Now和Siri 哪个更智能,貌似Google Now更智能。 本帖使用TensorFlow制作一个简单的聊天机器人。这个聊天机器人使用中文对话数据集进行训练(使用什么数据转载 2016-12-22 16:22:12 · 16979 阅读 · 27 评论 -
TensorFlow练习1: 对评论进行分类
本帖展示怎么使用TensorFlow实现文本的简单分类,判断评论是正面的还是负面的。 使用的数据集neg.txt:5331条负面电影评论(http://blog.topspeedsnail.com/wp-content/uploads/2016/11/neg.txt)pos.txt:5331条正面电影评论 (http://blog.topspeedsnail.com/wp转载 2016-12-27 15:10:05 · 4846 阅读 · 0 评论 -
tensorflow基础知识
Tensorflow谷歌开源的机器学习库,备受大家喜爱。下面讲解一些必备的基本知识。 tensorflow的运行流程主要有2步,分别是构造模型和训练。 在这之前,讲几个概念: tensorflow中的有几概念:Tensor,Variable,placeholder,session 1.概念 1.1 Tensorimport tensorflow as tf # 在下面所有代码中,,默认已经转载 2016-12-27 17:04:19 · 1989 阅读 · 0 评论 -
TensorFlow笔记---Seq2SeqModel
Seq2SeqModel已经广泛应用在机器翻译,QA问答,人工对话等一些自然语言处理问题中。其中tensorflow中有现成的框架,下面将进行介绍:机器翻译中的seq2seq的模型框架及相应参数;Seq2SeqModel(source_vocab_size, target_vocab_size, buckets,原创 2017-03-06 22:28:53 · 3353 阅读 · 0 评论 -
tensorflow保存变量出现错误(提示不能save)
错误名称:Tensorflow - ValueError: Parent directory of trained_variables.ckpt doesn’t exist, can’t saveThis is my line of code :saver.save(sess, "trained_variables.ckpt")出现上述错误,解决方案如下: 1)该路径应为:"./trained_v原创 2017-04-28 22:55:44 · 14671 阅读 · 7 评论 -
tensorflow(1) 共享变量
example1:with tf.variable_scope("try"): #先创建两个变量w1, w2 w2 = tf.get_variable("w1",shape=[2,3,4], dtype=tf.float32) w3 = tf.get_variable("w2", shape=[2, 3, 4], dtype=tf.float32) #使用reuse_原创 2017-04-05 22:56:09 · 832 阅读 · 0 评论 -
tensorflow(2) 命令行参数
全局环境下编写代码import tensorflow as tfflags = tf.flags #flags是一个文件:flags.py,用于处理命令行参数的解析工作logging = tf.logging#调用flags内部的DEFINE_string函数来制定解析规则flags.DEFINE_string("para_name_1","default_val", "description原创 2017-04-06 10:49:26 · 1015 阅读 · 0 评论 -
Variable has existed/does not exist ,Did you mean to set reuse=True/None?
最近写tensorflow程序,出现了一些bug,苦苦困扰了我好久,最终终于明白是变量共享问题。原创 2017-05-17 14:39:43 · 3808 阅读 · 2 评论 -
tensorflow学习(1)初步认识tensorflow
最近由于科研需要,使用了一段时间的tensorflow框架,也被蹂躏了很长一段时间。最终,下定决心,将其认真的学习一遍。一、tensorflow安装 首先保证你得先安装了python环境,如果你使用的windows环境,必须保证python是3.5.2,因为tensorflow windows版本只支持这一版本。 建议下载地址:Anaconda3下载地址原创 2017-05-28 22:01:18 · 798 阅读 · 0 评论 -
tensorflow学习(2)MNIST机器学习入门
以一个softmax回归例子来讲解;MNIST数据集的官网是Yann LeCun’s website。在这里,我们提供了一份python源代码用于自动下载和安装这个数据集。你可以直接复制粘贴到你的代码文件里面。 input_data.py:#coding=utf-8# Copyright 2015 Google Inc. All Rights Reserved.## Licensed und原创 2017-05-29 21:32:39 · 778 阅读 · 0 评论 -
tensorflow学习(3)tensorflow运行工作方式,以卷积神经网络分类为例
几乎所有的tensorflow机器学习代码都有一些共同的特点,以下就其工作方式,进行讲解:1)输入与占位符(Inputs and Placeholders) tf.placeholder操作,定义传入图表中的shape参数,shape参数中包括batch_size值,后续还会将实际的训练用例传入图表。images_placeholder = tf.placeholder(tf.floa原创 2017-05-30 15:51:52 · 1344 阅读 · 0 评论 -
tensorflow使用张量时的一些注意点tf.concat、tf.reshape、tf.stack
有一段时间没用tensorflow了,现在跑实验还是存在一些坑了,主要是关于张量计算的问题。tensorflow升级1.0版本后与以前的版本并不兼容,可能出现各种奇奇怪怪的问题。1 tf.concat函数 tensorflow1.0以前函数用法:tf.concat(concat_dim, values, name=’concat’),第一个参数为连接的维度,可以将几个向量按指定维度连接起来。原创 2018-01-12 22:36:06 · 8483 阅读 · 0 评论