浙大PAT 2-05. 求集合数据的均方差 (解题思路)

2-05. 求集合数据的均方差

时间限制
400 ms
内存限制
32000 kB
代码长度限制
8000 B
判题程序
Standard

设计函数求N个给定整数的均方差。若将N个数A[]的平均值记为Avg,则均方差计算公式为:

输入格式说明:

第1行输入正整数N(<=10000),第2行输入N个整数。

输出格式说明:

输出这N个数的均方差,要求固定精度输出小数点后5位。

样例输入与输出:

序号输入输出
1
10
6 3 7 1 4 8 2 9 11 5
3.03974
2
1
2
0.00000


#include <iostream>
#include <cmath>
#include <vector>
using namespace std;

vector<int> v;

int main()
{
	int n;
	cin>>n;
	double sum = 0.0, aver2 = 0.0;
	while(n--)
	{
		int t;
		cin>>t;
		sum += t;
		v.push_back(t);
	}
	sum /= v.size();
	for(int i = 0; i < v.size(); ++i)
	{
		aver2 += (v[i] - sum)*(v[i] - sum);
	}

	printf("%.5lf\n", sqrt(aver2/v.size()));
	return 0;
}




### 计算集合数据均方差 为了计算集合数据均方差,在 PTA 平台上的具体实现可以遵循以下法。首先,定义平值 `Avg` 和均方差 `Standard Deviation` 的概念。 对于 N 个给定整数 \( A[] \),如果这些数值的平值记作 Avg,则均方差可以通过下述公式来表示: \[ \text{Standard Deviation} = \sqrt{\frac{(A_1-\text{Avg})^2 + (A_2-\text{Avg})^2 + ... + (A_N-\text{Avg})^2}{N}} \] 下面是一个完整的 C 语言程序用于读取输入并输出所得的结果[^1]。 ```c #include <stdio.h> #include <math.h> double calculateAverage(int array[], int size) { double sum = 0; for (int i = 0; i < size; ++i) { sum += array[i]; } return sum / size; } double standardDeviation(int array[], int n) { double averageValue = calculateAverage(array, n); double varianceSum = 0; for (int i = 0; i < n; ++i) { varianceSum += pow((array[i] - averageValue), 2); } return sqrt(varianceSum / n); } int main() { int count; scanf("%d", &count); int dataPoints[count]; for (int index = 0; index < count; ++index) { scanf("%d", &dataPoints[index]); } double stdDevResult = standardDeviation(dataPoints, count); printf("Average = %.4f\n", calculateAverage(dataPoints, count)); printf("Standard Deviation = %.4f\n", stdDevResult); return 0; } ``` 此代码片段实现了两个功能函数:一个是用来计算数组元素的平值;另一个则是基于上述提到的法来计算标准偏差即均方差。最后,在主函数中调用了这两个辅助函数完成整个过程,并按照指定格式打印结果[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值