51nod 1256 乘法逆元(扩展欧几里得算法)

原创 2016年08月30日 19:57:51
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。
Input
输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9)
Output
输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。
Input示例
2 3
Output示例
2
唔。。这道题其实就是一个扩展欧几里得的模板题,诶你们应该都知道扩展欧几里得是干嘛的吧?好吧还是省去百度的时间吧=M=。
扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式: ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。
然后为了防止x是负数,一直加n加到正数为止:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
ll m,n,k;
void extend_Euclid(ll a,ll b,ll &x,ll &y)  
{  
    if(b==0)  
    {  
        x=1;  
        y=0;  
        return;  
    }  
    extend_Euclid(b,a%b,x,y);  
    int tmp=x;  
    x=y;  
    y=tmp-(a/b)*y;  
}  
int main()
{
	int i,j,k;
	ll x,y;
	scanf("%lld%lld",&m,&n);
	extend_Euclid(m,n,x,y);
	while(x<0)
	{
		x+=n;
	}
	printf("%d\n",x);
	return 0;
}




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

51nod-【1256 乘法逆元】

1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足...

51Nod(1256乘法逆元逆元)

 给出2个数M和N(M Input 输入2个数M, N中间用空格分隔(1  Output 输出一个数K,满足0  Input示例 2 3 Output示例...

51nod1256【exgcd求逆元】

思路: 把k*M%N=1可以写成一个不定方程,(k*M)%N=(N*x+1)%N,那么就是求k*M-N*x=1,k最小,不定方程我们可以直接利用exgcd,中间还搞错了; //小小地讲一下exgc...

求模乘法逆元

1.当gcd(a, b) = 1, 求(1/a)%b的值,相当求于 a*x = 1 (mod b),等价于 (1) 1%b = (1 - y*b ) % b  =(a * x )%b  = 1,所以...

51nod 1256 乘法逆元

模板题目,扩展欧几里得 #include using namespace std; int a,b,x,y; int exGcd(int a, int b, int& x, int& y) ...
  • MrSiz
  • MrSiz
  • 2015-11-28 16:52
  • 449

51Nod-1256-乘法逆元

ACM模版描述给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。Input 输入2个数M, N中间用空格...
  • f_zyj
  • f_zyj
  • 2016-07-29 01:34
  • 752

51nod:1256 乘法逆元(数学)

1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数...

51 nod 1256 乘法逆元

例如:4关于1模7的乘法逆元为多少? 4X≡1 mod 7 这个方程等价于求一个X和K,满足 4X=7K+1 其中X和K都是整数。 若ax≡1 mod f, 则称a关于模...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)