支持向量机SVM原理篇

1.关键概念及学习目标

  • 线性&非线性分类问题&核技巧

    • 非线性分类问题是指通过利用非线性模型才能很好地进行分类的问题。如上图左侧,我们无法用直线(线性模型)将正负例正确分开,但可以用一条椭圆曲线(非线性模型)将他们正确分开。此时,我们可以进行一个非线性变换。
    • 核技巧应用到支持向量机,其基本想法就是通过一个非线性变换将输入空间(欧氏空间或离散集合)对应于一个特征空间(希尔伯特空间),使得原有的超曲面模型对应于特征空间的超平面模型
  • 支持向量和间隔边界

    • 在线性可分的情况下,训练数据集的样本点中与分离超平面距离最近的样本点的实例称为支持向量。在决定分离超平面时只有支持向量起作用,而其他实例点并不起作用。(:这里我们讨论的是线性可分的SVM,对于软间隔,非线性可分情况,则可以通过加正则、核技巧解决,其他类似)

      如上图所示,上的点就是支持向量。同时支持向量需要满足下面这个约束条件。

    • 举例来说

      如上图所示,其中X1,X2为正例,X3为反例,则SVM希望
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值