- 博客(115)
- 收藏
- 关注
原创 解决 filezilla 连接服务器失败问题
开始一直用的 XFTP 后来,它变成收费软件了。点击左上角的“编辑” ,选择“清除个人信息”所以使用filezilla 代替 XFTP。再重新创建站点,填入站点信息即可。按要求输入相关字段,连接。然后四个框框全部打勾√。
2023-09-02 16:51:26
1671
1
原创 知识扫盲:id rsa、 id rsa.pub 和authorized keys
介绍SSH的知识:id rsa、 id rsa.pub 和authorized keys。
2023-08-09 15:18:48
1945
原创 【机器学习】第四节:监督学习算法对比评估
监督学习(英语:Supervised learning)是机器学习中最为常见、应用最为广泛的分支之一。本次实验将带你了解监督学习中常见的分类方法,并学会使用 scikit-learn 来构建预测模型,用于解决实际问题。
2023-05-03 11:10:27
1481
11
原创 Python——狂肝两万字带你学会【类与对象】
类(class)和对象(object)是两种以计算机为载体的计算机语言的合称。对象是对客观事物的抽象,类是对对象的抽象。类是一种抽象的数据类型。它们的关系是,对象是类的实例,类是对象的模板。
2023-05-01 10:25:51
1761
14
原创 【机器学习】第三节:支持向量机分类预测
监督学习(英语:Supervised learning)是机器学习中最为常见、应用最为广泛的分支之一。本次实验将带你了解监督学习中运用十分广泛的支持向量机,并学会使用 scikit-learn 来构建预测模型,用于解决实际问题。
2023-04-29 09:36:33
2243
1
原创 【机器学习】第二节:线性回归和线性分类
监督学习(英语:Supervised learning)是机器学习中最为常见、应用最为广泛的分支之一。
2023-04-22 10:26:54
1989
2
原创 【PyTorch】第九节:Softmax 函数与交叉熵函数
本实验主要讲解了分类问题中的二分类问题和多分类问题之间的区别,以及每种问题下的交叉熵损失的定义方法。由于多分类问题的输出为属于每个类别的概率,要求概率和为 1 。因此,我们还介绍了如何利用 Softmax 函数,处理神经网络的输出,使其满足损失函数的格式要求。
2023-04-17 14:00:00
3734
4
原创 【PyTorch】第八节:数据的预处理
torchvision.transforms是一个包含了常用的图像变化方法的工具包,该工具包主要用于图像预处理、数据增强等工作之中。本实验,将详细介绍torchvision.transforms中常用的数据处理函数。
2023-04-16 21:36:57
2001
8
原创 【PyTorch】第七节:数据加载器
数据是深度学习的基础,我们解决的大多数深度学习问题都是需要数据的。而每一种深度学习框架都对数据的格式有自己的要求,因此,本实验主要讲解了 PyTorch 对输入数据的格式要求,以及如何将现实中的数据处理成 PyTorch 能够识别的数据集合。
2023-04-16 15:00:00
773
2
原创 【PyTorch】第六节:乳腺癌的预测(二分类问题)
上一个实验我们讲解了线性问题的求解步骤,本实验我们以乳腺癌的预测为实例,详细的阐述如何利用 PyTorch 求解一个非线性问题。
2023-04-16 09:22:41
3336
2
原创 【PyTorch】课堂测试一:线性回归的求解
这个是我们的第一次课堂测试,共有四个挑战,本测试需要你利用前面所学到的 PyTorch 知识,完成线性回归问题的求解,时间为30min。
2023-04-15 00:25:50
564
原创 【PyTorch】第五节:损失函数与优化器
在上一节实验中,我们初步完成了梯度下降算法求解线性回归问题的实例。在这个过程中,我们自己定义了损失函数和权重的更新,其实PyTorch 也为我们直接定义了相应的工具包,使我们能够简洁快速的实现损失函数、权重的更新和梯度的求解。
2023-04-14 20:30:47
848
1
原创 【PyTorch】第四节:梯度下降算法
本实验主要对梯度下降算法的基本原理进行了讲解,然后使用手写梯度下降算法解决了线性回归问题。最后对 PyTorch 中的反向传播函数进行了讲解并利用该函数简明快速的完成了损失的求导与模型的训练。
2023-04-13 13:00:00
548
原创 【PyTorch】第三节:反向传播算法
反向传播算法是训练神经网络的最常用且最有效的算法。本实验将阐述反向传播算法的基本原理,并用 PyTorch 框架快速的实现该算法。
2023-04-13 08:30:00
1182
原创 【PyTorch】第二节:梯度的求解
本实验首先讲解了梯度的定义和求解方式,然后引入 PyTorch 中的相关函数,完成了张量的梯度定义、梯度计算、梯度清空以及关闭梯度等操作。
2023-04-12 21:00:00
1929
原创 【PyTorch】第一节:张量(Tensor)的定义
PyTorch 中的所有操作都是在张量的基础上进行的,本实验主要讲解了张量定义和相关张量操作以及 GPU 和张量之间的关系,为以后使用 PyTorch 进行深度学习打下坚实的基础。
2023-04-12 13:56:42
3452
2
原创 【机器学习】随机森林预测泰坦尼克号生还概率
杰克和露丝的爱情,生命的不可预料,使得泰坦尼克号的沉没即悲伤又美好。本实验将通过数据来预测船员和乘客的生还状况,包括数据清洗及可视化、模型训练及评估,以及随机森林分类器调参等内容。
2023-04-11 17:30:00
3971
原创 【Pandas】① Pandas 数据处理基础
Pandas 是非常著名的开源数据处理库,其基于 NumPy 开发,该工具是 Scipy 生态中为了解决数据分析任务而设计。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的函数和方法。
2023-04-11 08:30:00
1603
原创 【数据可视化】案例一:美国人口与种族变迁史
作为一个移民国家,美国的种族和人口问题全方位地影响着美国各州的政治、经济、文化和司法,本实验通过对美国人口普查局与美国国家卫生统计中心自 1990 以来调查获得的长达 29 年的美国人口和种族数据的分析,研究及可视化了美国在此期间的人口和种族的变迁史。
2023-04-10 16:00:00
1475
4
原创 Seaborn 数据可视化基础
Seaborn 是以 Matplotlib 为核心的高阶绘图库,无需经过复杂的自定义即可绘制出更加漂亮的图形,非常适合用于数据可视化探索。
2023-04-10 09:00:00
1016
原创 第三节、语言模型
语言模型,个人理解,也可以认为是,如何从机器的角度,来建模并认知语言。其发展历程基本也和自然语言处理的技术发展历史一致,从规则到统计,再从统计到深度学习。
2023-04-09 20:00:00
704
原创 Debug | wget 的安装与使用(Windows)
在jupyter notebook中做机器学习导入数据使用!wget遇到了这个问题,查到发现wget是linux系统下,windows不自带。
2023-04-09 11:59:42
1230
原创 【机器学习】第一节:机器学习和 scikit-learn 介绍
机器学习(英语:Machine learning)如今越来越热门,而入门机器学习的门槛也变得越来越低。得益于优秀的机器学习框架和工具,初学者也可以很快上手一个机器学习项目,并使用机器学习算法来挖掘自己的数据。
2023-04-09 11:00:00
966
原创 第二节:文本数据预处理
在处理文本的任务中,也存在预处理这么一个重要阶段,包括诸如统一数据格式、去噪、词形还原、分词之类的基本操作,以及语义分析、关键词提取、对于数据不平衡的处理等更进一步的精细处理。
2023-04-08 16:30:00
1960
原创 第一节、文本数据的读写及操作
在自然语言处理的第一步,我们要面对的是各种各样以不同形式表现的文本数据,比如,有的是纯 txt 文档,有的是存储在 Excel 中的表格数据,还有的是无法直接打开的 pkl 文件等。刚开始接触编程的同学在这里就犯难了,这可怎么把文本数据拿来进行代码层面的操作呢?事实上,会者不难,针对这些不同类型的数据,可以基于 Python 中的基本功能函数或者调用某些库进行读写以及作一些基本的处理。本实验将介绍一些常见形式文件的操作,相信在学完本实验以后,大家能够非常快速地上手读写及处理大部分类型的文本数据。知识点。
2023-04-07 21:30:00
801
1
原创 Matplotlib 数据绘图基础入门
Matplotlib 是支持 Python 语言的开源绘图库,因为其支持丰富的绘图类型、简单的绘图方式以及完善的接口文档,深受 Python 工程师、科研学者、数据工程师等各类人士的喜欢。本次实验课程中,我们将学会使用 Matplotlib 绘图的方法和技巧。
2023-04-01 19:13:30
2031
原创 蓝桥杯倒计时 | 倒计时17天
N = 300 # 背包容量W =[0,6,2,5,5,4,5,6,3,7,6] # 每种火柴的重量for i in range(1,11): # 遍历所有数字:数字0为1,数字1为2,以此类推。for k in range(0,11): # 每个数字最多有10个,每个价值为1for j in range(k * W[i],301): # 枚举背包容量。
2023-03-22 19:38:49
1832
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人