改段求段是树状数组中的一个重难点,它需要运用上改段求点的知识。
需要2个树状数组:c1,c2。
c1与改段求点的c一样,都是记录差值,为了求出某个点的值。
c2用来记录当以c1[ i ]×i来求1~i的值时,与真实值的差(c2[ i ]=ans-c1[ i ]×i),所以ans=c1[ i ]×i+c2[ i ]。
当c2需更新时,只需改头和尾+1即可。
头:加上 -(x-1)*z,因为a[ x ]增大了,那c1[ i ]×i的值也会增大,所以要减去 前面个数×增大值。
尾:因为前一段加大了,现在c1[ i ]×i的值会比原来小,小了 增大范围的大小×增大值,由于前面减去了 (x-1)*z,现在要补回,并且还要加上(y-x+1)*z,即共加上(y-x+1)*z+(x-1)*z=y*z。
例题:(codevs 1082)
给你n个数,有两种操作:
1:给区间[a,b]的所有数增加x;
2:询问区间[a,b]的数的和。
代码:
#include<cstdio>
#include<cstring>
using namespace std;
int n,m;
long long c1[200010],c2[200010];
int lowbit(int x)
{
return x&-x;
}
long long add(long long c[],int x,int k)
{
while(x<=n)
{
c[x]+=k;
x+=lowbit(x);
}
}
long long wen(long long c[],int x)
{
long long s=0;
while(x>=1)
{
s+=c[x];
x-=lowbit(x);
}
return s;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
add(c1,i,x);add(c1,i+1,-x);
add(c2,i,-(i-1)*x);add(c2,i+1,i*x);
}
scanf("%d",&m);
while(m--)
{
int o,x,y,z;
scanf("%d",&o);
if(o==1)
{
scanf("%d%d%d",&x,&y,&z);
add(c1,x,z);add(c1,y+1,-z);
add(c2,x,-(x-1)*z);add(c2,y+1,y*z);
}
else
{
scanf("%d%d",&x,&y);
long long ans=wen(c1,y)*y+wen(c2,y)-wen(c1,x-1)*(x-1)-wen(c2,x-1);
printf("%lld\n",ans);
}
}
return 0;
}
推荐:《树状数组—介绍》http://blog.csdn.net/a_bright_ch/article/details/54584667
《树状数组—改点求段》http://blog.csdn.net/a_bright_ch/article/details/54598319
《树状数组—改段求点》http://blog.csdn.net/a_bright_ch/article/details/54616490