树状数组—改段求段

改段求段是树状数组中的一个重难点,它需要运用上改段求点的知识。

需要2个树状数组:c1,c2。

c1与改段求点的c一样,都是记录差值,为了求出某个点的值。
c2用来记录当以c1[ i ]×i来求1~i的值时,与真实值的差(c2[ i ]=ans-c1[ i ]×i),所以ans=c1[ i ]×i+c2[ i ]。

当c2需更新时,只需改头和尾+1即可。
头:加上 -(x-1)*z,因为a[ x ]增大了,那c1[ i ]×i的值也会增大,所以要减去 前面个数×增大值。
尾:因为前一段加大了,现在c1[ i ]×i的值会比原来小,小了 增大范围的大小×增大值,由于前面减去了 (x-1)*z,现在要补回,并且还要加上(y-x+1)*z,即共加上(y-x+1)*z+(x-1)*z=y*z。


例题:(codevs 1082)

给你n个数,有两种操作:
1:给区间[a,b]的所有数增加x;
2:询问区间[a,b]的数的和。

代码:

#include<cstdio>
#include<cstring>
using namespace std;

int n,m;
long long c1[200010],c2[200010];

int lowbit(int x)
{
	return x&-x;
}

long long add(long long c[],int x,int k)
{
	while(x<=n)
	{
		c[x]+=k;
		x+=lowbit(x);
	}
}

long long wen(long long c[],int x)
{
	long long s=0;
	while(x>=1)
	{
		s+=c[x];
		x-=lowbit(x);
	}
	return s;
}

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		int x;
		scanf("%d",&x);
		add(c1,i,x);add(c1,i+1,-x);
		add(c2,i,-(i-1)*x);add(c2,i+1,i*x);
	}
	scanf("%d",&m);
	while(m--)
	{
		int o,x,y,z;
		scanf("%d",&o);
		if(o==1)
		{
			scanf("%d%d%d",&x,&y,&z);
			add(c1,x,z);add(c1,y+1,-z);
			add(c2,x,-(x-1)*z);add(c2,y+1,y*z);
		}
		else
		{
			scanf("%d%d",&x,&y);
			long long ans=wen(c1,y)*y+wen(c2,y)-wen(c1,x-1)*(x-1)-wen(c2,x-1);
			printf("%lld\n",ans);
		}
	}
	return 0;
}

推荐:《树状数组—介绍》http://blog.csdn.net/a_bright_ch/article/details/54584667
           《树状数组—改点求段》http://blog.csdn.net/a_bright_ch/article/details/54598319
           《树状数组—改段求点》http://blog.csdn.net/a_bright_ch/article/details/54616490

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值