树状数组—改段求点

对于更改一段区间的值,然后求出某个点的值的问题,我们可以先记录它的第一个量,后面记录的差值c[ i ] = a[ i ] - a[ i-1 ]),所以a[ i ] = a[ i-1 ] + c[ i ]。这样就可以利用树状数组求和快的特点,迅速求出其值。

相当于每个c存的是与上一个值的距离(意思就是需要改变多少就能得到现在这个值)。

在更新时也只需要改区间头的c值 以及区间尾+1的c值 即可。其中,头要+x,尾+1要-x。在1~头的部分不会受到影响;头~尾的部分会+x;尾以后的部分一个+x和一个-x抵消了,也不会受到影响。


例题:(来源: codevs 1081)

给你N个数,有两种操作:
1:给区间[a,b]的所有数都增加X;
2:询问第i个数是什么。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int n,m;
int c[100010];

int lowbit(int x)
{
	return x&-x;
}

void add(int x,int k)
{
	while(x<=n)
	{
		c[x]+=k;
		x+=lowbit(x);
	}
}

int wen(int x)
{
	int s=0;
	while(x>=1)
	{
		s+=c[x];
		x-=lowbit(x);
	}
	return s;
}

int main()
{
	memset(c,0,sizeof(c));
	scanf("%d",&n);
	int x,y;
	scanf("%d",&x);
	add(1,x);
	for(int i=2;i<=n;i++)
	{
		scanf("%d",&y);
		add(i,y-x);//存两个之差
		x=y;
	}
	scanf("%d",&m);
	for(int i=1;i<=m;i++)
	{
		int o,x,y,z;
		scanf("%d",&o);
		if(o==1)
		{
			scanf("%d%d%d",&x,&y,&z);
			add(x,z);add(y+1,-z);//改变头和尾+1
		}
		else
		{
			scanf("%d",&x);
			int ans=wen(x);
			printf("%d\n",ans);
		}
	}
	return 0;
}

推荐:《树状数组—介绍》http://blog.csdn.net/a_bright_ch/article/details/54584667
           《树状数组—改点求段》http://blog.csdn.net/a_bright_ch/article/details/54598319
           《树状数组—改段求段》http://blog.csdn.net/a_bright_ch/article/details/54616312

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值