对于更改一段区间的值,然后求出某个点的值的问题,我们可以先记录它的第一个量,后面记录两两的差值(c[ i ] = a[ i ] - a[ i-1 ]),所以a[ i ] = a[ i-1 ] + c[ i ]。这样就可以利用树状数组求和快的特点,迅速求出其值。
相当于每个c存的是与上一个值的距离(意思就是需要改变多少就能得到现在这个值)。
在更新时也只需要改区间头的c值 以及区间尾+1的c值 即可。其中,头要+x,尾+1要-x。在1~头的部分不会受到影响;头~尾的部分会+x;尾以后的部分一个+x和一个-x抵消了,也不会受到影响。
例题:(来源: codevs 1081)
给你N个数,有两种操作:
1:给区间[a,b]的所有数都增加X;
2:询问第i个数是什么。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m;
int c[100010];
int lowbit(int x)
{
return x&-x;
}
void add(int x,int k)
{
while(x<=n)
{
c[x]+=k;
x+=lowbit(x);
}
}
int wen(int x)
{
int s=0;
while(x>=1)
{
s+=c[x];
x-=lowbit(x);
}
return s;
}
int main()
{
memset(c,0,sizeof(c));
scanf("%d",&n);
int x,y;
scanf("%d",&x);
add(1,x);
for(int i=2;i<=n;i++)
{
scanf("%d",&y);
add(i,y-x);//存两个之差
x=y;
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int o,x,y,z;
scanf("%d",&o);
if(o==1)
{
scanf("%d%d%d",&x,&y,&z);
add(x,z);add(y+1,-z);//改变头和尾+1
}
else
{
scanf("%d",&x);
int ans=wen(x);
printf("%d\n",ans);
}
}
return 0;
}
推荐:《树状数组—介绍》http://blog.csdn.net/a_bright_ch/article/details/54584667
《树状数组—改点求段》http://blog.csdn.net/a_bright_ch/article/details/54598319
《树状数组—改段求段》http://blog.csdn.net/a_bright_ch/article/details/54616312