反素数应用分析

首先我们先来看什么是反素数:

反素数的定义:对于任何正整数,其约数个数记为,例如,如果某个正整数满足:对任意的正整


,都有,那么称为反素数。

 

  

  从反素数的定义中可以看出两个性质:

 

(1)一个反素数的所有质因子必然是从2开始的连续若干个质数,因为反素数是保证约数个数为的这个数尽量小

(2)同样的道理,如果,那么必有



  在ACM竞赛中,最常见的反素数的问题如下:


(1)求出中约数个数最多的这个数

(2)给定一个数,求一个最小的正整数,使得的约数个数为


对于第一个问题来说,实质就是找出不大于n的最大的反素数。

题目链接:ZOJ1562



实现代码如下:


代码1:


#include<stdio.h>
typedef long long ll;
const int prime[16]= {1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47};
ll maxsum, bestnum, n;
void getantiprime(ll num, ll k,ll sum,int limit)
{//num:当前枚举到的数,k:枚举到的第k大的质因子;sum:该数的约数个数;limit:质因子个数上限;
    ll temp;
    if(sum > maxsum)
    {
        maxsum = sum;
        bestnum = num; //如果约数个数更多,将最优解更新为当前数;
    }
    if(sum==maxsum && bestnum > num)
        bestnum = num; //如果约数个数相同,将最优解更新为较小的数;
    if(k > 15)  return;
    temp = num;
    for(int i=1; i<=limit; i++) //开始枚举每个质因子的个数;
    {
        if(temp*prime[k] > n)  break;
        temp = temp * prime[k]; //累乘到当前数;
        getantiprime(temp, k+1, sum*(i+1), i); //继续下一步搜索;
    }
}
int main()
{
    while(~scanf("%lld", &n))
    {
        maxsum=0;
        bestnum=0;
        getantiprime(1,1,1,50);
        printf("%lld\n", bestnum);
    }
    return 0;
}







代码2:


#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef unsigned long long ULL;
const ULL INF = ~0ULL;

int p[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};

ULL ans,n;
int best;

void dfs(int dept,ULL tmp,int num)
{
    //到叶子结点,返回
    if(dept >= 16) return;
    //num记录的因子个数,如果遇到更小的,就更新
    if(num > best)
    {
        best = num;
        ans = tmp;
    }
    //当因子个数相同时,取值最小的
    if(num == best && ans > tmp) ans = tmp;
    for(int i=1;i<=63;i++)
    {
        if(n / p[dept] < tmp) break;
        dfs(dept+1,tmp *= p[dept],num*(i+1));
    }
}

int main()
{
    while(cin>>n)
    {
        ans = INF;
        best = 0;
        dfs(0,1,1);
        cout<<ans<<endl;
    }
    return 0;
}






对于第2个问题,与求因子的方法类似,先建立搜索树,然后以每一个pi为一层建立树型结构,搜索出最小的x。

题目链接:codeforce/27/E



实现代码如下:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef unsigned long long ULL;
const ULL INF = ~0ULL;

int p[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};

int n;
ULL ans;

void dfs(int dept,ULL tmp,int num)
{
    if(num > n) return;
    if(num == n && ans > tmp) ans = tmp;
    for(int i=1;i<=63;i++)
    {
        if(ans / p[dept] < tmp) break;
        dfs(dept+1,tmp *= p[dept],num*(i+1));
    }
}

int main()
{
    while(cin>>n)
    {
        ans = INF;
        dfs(0,1,1);
        cout<<ans<<endl;
    }
    return 0;
}






题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1748



实现代码如下:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef unsigned long long ULL;
const ULL INF = ~0ULL;

int p[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};

ULL ans,n;
int best;

void dfs(int dept,int limit,ULL tmp,int num)
{
    if(tmp > n) return;
    if(num > best)
    {
        best = num;
        ans = tmp;
    }
    if(num == best && ans > tmp) ans = tmp;
    for(int i=1;i<=limit;i++)
    {
        double cur = (double)tmp;
        if(n < cur*p[dept]) break;
        dfs(dept+1,i,tmp *= p[dept],num*(i+1));
    }
}

int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        cin>>n;
        ans = INF;
        best = 0;
        dfs(0,60,1,1);
        cout<<ans<<" "<<best<<endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值