- 博客(4106)
- 资源 (6)
- 收藏
- 关注

原创 程序员职业生涯系列:关于技术能力的思考与总结
引子儒、释(佛)、道三家思想:释(佛家):处理好人与心的关系,我们要战胜自己;儒(儒家):处理好人与人的关系,我们要团结好他人;道(道家):处理好人与自然的关系,我们应该顺势而为。明人陆绍珩《醉古堂剑扫》自叙有云:一愿识尽人间好人,二愿读尽世间好书,三愿看尽世间好山水。或曰:静则安能,但身到处,莫放过耳。旨哉言乎!余性懒,逢世一切炎热争逐之场,了不关情。惟是高山流水,任意所如,遇翠丛紫莽,竹林芳径......
2022-08-29 10:00:40
85429
22

原创 2023,程序员的出路在哪里?
可是似乎从30岁开始这工资就没涨过,前面跳槽几次涨的薪水在30岁以后跳槽已经不管用了、定格了,这几年由于市场环境不景气,程序员竞争越来越激烈,36岁跟30拿的工资一模一样,不仅工资拿的一样,反而事情还越来越多了,这些都意味着什么?处理故障需要的通常不仅仅是写代码的能力,还需要对一个系统的全貌要有一定的掌握。虽然目前不少大型互联网企业都在进行结构性调整,但是从互联网行业发展的基本面来看,未来在产业互联网发展的过程中,IT行业和传统行业将会释放出大量的就业岗位,所以未来程序员的发展空间还是非常值得期待的。
2021-02-05 20:19:24
108472
61

原创 怎样成为一个优秀的架构师?
怎样才算是架构师?架构师是一个既能掌控整体又能洞悉局部瓶颈并依据具体的业务场景给出解决方案的团队领导型人物。看似完美的“人格模型”背后,是艰辛的探索。架构师不是一个人,他需要建立高效卓越的体系,带领团队去攻城略地,在规定的时间内完成项目。架构师的分类从业界来看对于架构师的理解可以大概区分为: 企业架构师:专注于企业总体 IT 架构的设计。 IT 架构师-软件产品架构...
2019-10-08 17:17:14
87626
21
原创 GPT-3的语言生成能力:从文学创作到电商推荐的多种应用 - 深入探究GPT-3在不同领域的语言生成能力,包括文学创作、电商推荐和智能客服等场景。
语言模型:GPT-3利用大量的预训练数据,学习语言模式和结构,并利用这些数据来预测下一个句子中可能出现的词语和短语。序列到序列模型:GPT-3的序列到序列模型是一种用于生成文本的神经网络模型。GPT-3通过将输入的文本序列转换为一系列离散的编码,以便在生成文本时对编码进行编码。生成式模型:GPT-3是一种生成式模型,它可以根据输入的文本数据生成相应的自然语言文本。GPT-3利用大量的文本数据进行训练,以便在生成文本时能够考虑到上下文和语法规则。
2023-06-11 03:10:25
原创 GPT-3:一个革命性的预训练语言模型 - 探索GPT-3作为语言模型的能力和实用性,以及其应用领域。
在选择模型架构时需要根据具体应用场景来选择合适的模型架构,并在调整GPT-3的参数以提高性能方面采用一些技巧,在优化GPT-3的训练数据方面也可以采用一些技术。然而,现有的自然语言处理技术仍存在许多挑战,例如语言的多样性、语言的语法和语义规则的复杂性、大规模数据的存储和处理等问题。总结起来,GPT-3是一种革命性的预训练语言模型,它的出现将彻底改变我们对自然语言处理的理解。这些问题可以通过使用常见的技术来解决,例如调整模型架构、使用数据增强技术或实现GPT-3时,选择合适的模型架构是一个至关重要的问题。
2023-06-11 03:07:52
原创 大型语言模型的实现技术原理与应用
大型语言模型的实现需要使用多种技术,包括语言数据的处理、模型的构建和训练、模型的部署和应用等。模型的构建是指根据语言数据的特征信息,构建出一组合适的神经网络结构,以实现对语言的建模和处理。语言模型是一种能够处理自然语言的计算机程序,能够学习人类语言的语法、语义和用法,并通过大量的语言数据进行训练,从而生成高质量的自然语言文本。对于翻译任务,我们可以使用预训练的 CNN 和 RNN 模型,而对于文本生成任务,我们可以使用预训练的自编码器和 LSTM 模型。大型语言模型的实现和应用已经受到了广泛的关注和应用。
2023-06-11 02:12:37
10
原创 软件架构入门指南:理解架构设计的基本原则
软件架构:描述了软件系统各个组件之间的关系和交互方式,以及它们如何共同实现系统的功能。组件:软件系统的独立功能单元,如模块、类、函数等。交互:组件之间的信息传递和数据交换。接口:组件之间通信的约定或规范。体系结构风格:描述了如何组织和管理代码库的方法,如分层、模块化、服务导向等。设计模式:一种解决特定问题的通用方案,可以应用于软件架构设计中。技术选型:根据项目需求和约束条件,选择合适的编程语言、框架、数据库等技术工具。
2023-06-10 19:02:42
33
原创 在金融领域中应用深度学习来预测市场走向
在深入讨论深度学习在金融领域的应用之前,我们需要先了解一些相关的概念和术语。监督学习:监督学习是一种机器学习的范式,它通过训练数据集中的样本和对应的标签来构建模型,然后使用这个模型对新的未知数据进行分类或回归预测。时序数据:时序数据是一种按时间顺序排列的数据,比如股票价格、商品价格、气温等。循环神经网络(RNN):循环神经网络是一种递归神经网络(Recurrent Neural Network),它可以处理序列数据,通过将前面的输出作为当前输入的一部分来实现对历史信息的传递和利用。
2023-06-10 18:07:32
36
原创 机器学习和人工智能如何改变未来的就业和职业发展
在开始探讨人工智能和机器学习技术如何改变未来的就业和职业发展之前,我们先来了解一下这些技术的相关术语和概念。随着人工智能和机器学习技术的不断发展和普及,它们已经成为了未来职业发展的重要方向之一。无论是在生产制造、金融投资还是医疗保健领域,这些技术都将会带来更多的机遇和挑战。未来,人工智能和机器学习技术将进一步优化和完善,涌现出更多的应用场景和解决方案,同时也会带来人类认知和伦理道德等方面的挑战。因此,我们需要始终保持学习和创新的态度,掌握最新的技术和工具,以便更好地应对未来的挑战。
2023-06-10 17:48:48
40
原创 深度强化学习:教会机器人做出复杂决策
强化学习(Reinforcement Learning)是指通过奖励与惩罚的方式来训练机器学习模型,让模型掌握如何在一个未知环境中做出最佳决策的能力。深度强化学习是一个非常有前景和挑战性的领域,在未来的自主导航、自主控制、自主交互等领域具有广泛的应用前景。虽然目前仍存在许多问题和挑战,但相信随着技术的不断进步,深度强化学习一定会在人工智能领域中发挥越来越重要的作用。
2023-06-10 17:42:28
25
原创 解读 GPT-3:如何让机器理解自然语言
自然语言处理(NLP)是指计算机科学、人工智能和语言学等领域之间交叉的领域,旨在使计算机能够理解、处理和生成自然语言。它涉及到词法分析、句法分析、语义分析、文本生成、机器翻译等多个方面,为人工智能技术的发展提供了有力支持。本文详细介绍了 GPT-3 的原理、实现方法和应用场景,同时提供了使用 GPT-3 进行文本生成任务的示例代码。未来,随着自然语言处理技术的不断发展,GPT-3 模型的性能和应用场景将会更加广泛。同时,针对 GPT-3 模型存在的问题,仍需要进一步进行研究和优化。
2023-06-10 17:28:57
16
原创 人工智能中的数据伦理问题与隐私保护:现状与挑战
数据伦理问题是指在数据的收集、处理和分析过程中可能遇到的道德和法律问题。例如,在数据收集过程中可能存在隐私侵犯、歧视性和不公正性等问题;在数据分析和决策过程中可能存在认知偏见、透明度和责任追溯等问题。本文重点介绍了人工智能中的数据伦理问题和隐私保护技术,同时提供了实际操作的指南和示例。我们可以看到,数据伦理问题和隐私保护是人工智能应用中需要重点关注和解决的问题。未来,我们需要继续加强技术研究和实践应用,探索更加有效的数据隐私保护方法和机制,以保障人工智能技术的可持续发展和社会效益。
2023-06-10 15:10:25
36
原创 AI在教育领域的应用:个性化学习、知识管理与智能辅导
个性化学习:根据学生的学习历史、兴趣爱好、能力水平等制定个性化学习计划,提供量身定制的学习体验。知识管理:利用信息技术对知识进行分类、保存、共享和传播,从而提高知识的使用效率和质量。智能辅导:基于人工智能技术,结合学生的学习情况和特点,为学生提供个性化的、智能化的学习辅导服务,以帮助学生更好地理解和掌握知识。
2023-06-10 14:35:19
40
原创 AI解决方案:利用人工智能增强企业竞争力和创新能力
人工智能(AI)是一种模拟人类智能的技术,通过计算机系统对大量数据进行模式识别和预测,从而实现自主学习和自我优化的能力。智能化:AI能够自主完成任务,并能够反馈和调整结果。数据驱动:AI采用大数据作为输入源,通过建立模型和算法进行训练。自主学习:AI能够自动学习和优化模型,提高预测准确率。在本文中,我们介绍了如何利用人工智能增强企业竞争力和创新能力,包括关键问题分析、问题解决方案核心原理讲解以及实战案例的分析和总结。具体来说,我们介绍了人工智能的概念和特点,以及解决企业关键问题的方法和技术措施。
2023-06-10 14:23:54
48
原创 【人工智能】深度强化学习的新突破:如何打造智能决策系统
在深度强化学习中,有很多的概念和术语需要我们去了解。本文介绍了深度强化学习技术的相关概念、原理及应用,以及如何使用深度强化学学实现智能决策系统。在深度强化学习中,模型设计、数据集选择、模型评估和应用场景都是需要我们注意的重要因素。通过实际案例的演示,我们可以看到深度强化学习技术在实践中的应用和实现过程。虽然深度强化学习在很多领域已经取得了很大的进展,但仍有很多挑战需要面对和解决,例如可解释性、模型鲁棒性、样本效率等问题。因此,未来需要更加深入地研究深度强化学习技术,并不断推动其在各个领域的应用和发展。
2023-06-10 12:45:43
31
原创 【人工智能】从GPT-3到AGI:人工智能的进化发展与未来
在进入正文之前,让我们先来了解一些相关的概念。本篇博客介绍了从GPT-3到AGI的人工智能技术的进化发展和未来趋势,并提供了实际操作的指南和示例。我们认为,未来的人工智能将逐步具备自主学习、决策、推理和创造的能力,实现真正的通用人工智能将是人工智能领域未来的研究重点和挑战。我们期待看到更多的技术和工具被开发出来,以解决相关的技术和应用难题,并加速人工智能的发展和应用。
2023-06-10 12:40:41
30
原创 各家LLM大模型写作能力大比拼【GPT4、ChatGPT、ChatGLM-6B、ChatGLM-130B、文心一言、讯飞星火、Claude+】《人工智能之神经网络的前世今生和未来发展趋势》为标题
神经网络是一种类比于人类神经系统的计算模型,由多个神经元按照特定的结构和连接方式组成。神经网络的核心思想是通过模拟人类神经系统的学习和适应能力,从而实现对复杂问题的预测和处理。在神经网络中,通常会使用激活函数来计算神经元的输出值。常用的激活函数包括sigmoid函数、ReLU函数和tanh函数等。此外,神经网络还需要进行反向传播算法来优化权重和偏置值,从而提高预测的准确性。本文主要介绍了神经网络的前世今生和未来发展趋势,深入阐述了神经网络的核心原理和实现方法,并提供了实际操作的指南和示例。
2023-06-10 03:22:06
29
原创 Note AI(记录爱) 智能写作平台,一款集成AI大模型的云笔记产品的系统设计
在介绍 Note AI 的系统设计之前,我们需要了解一下相关的概念和术语。人工智能 (Artificial Intelligence, AI) 是指计算机系统模拟、扩展人类智能的一种技术。深度学习 (Deep Learning) 是人工智能的一个分支,它通过多层神经网络模拟人类大脑的学习和认知过程,从而实现图像、语音、自然语言处理等任务。大模型 (Big Model) 是指使用大规模数据集进行训练的深度学习模型,它能够显著提高模型的性能和准确度,但同时也会增加模型的开发和部署成本。
2023-06-10 01:44:37
23
原创 【创业项目】Note AI(记录爱) 智能写作平台,一款集成AI大模型的云笔记产品。
一款集成AI大模型的智能写作平台,支持用户进行文本输入、编辑、排版等操作,并自动根据输入内容生成相应的文章、摘要、标题等。Note AI(记录爱)智能写作平台是一款集成AI大模型的云笔记产品,它利用自然语言处理技术和深度学习模型,能够帮助用户更高效地记录和整理信息,提高写作效率和质量。Note AI平台的主要特点包括:智能写作:Note AI平台集成了多个先进的自然语言处理模型,能够自动识别和纠正语法和拼写错误,提供语义化分析和推荐,并支持自动摘要和文章生成等功能。
2023-06-10 00:56:47
31
原创 【人工智能】大模型复杂系统的涌现与演化进化规律
近年来,深度学习领域取得了巨大的进展,其中以大模型为代表的深度神经网络模型更是成为了当今最具有代表性的技术之一。这些大模型凭借着其强大的表达能力和高精度的预测能力,在自然语言处理、计算机视觉、语音识别等任务上都获得了极佳的表现。但同时,大模型也面临着诸多挑战,例如训练难度大、运行速度慢、计算资源消耗高等问题。这篇文章将探讨大模型作为一种复杂系统的涌现过程以及其中的演化进化规律,希望能够对深度学习领域的爱好者们有所启发。本文从涌现和演化的角度出发,分析了大模型作为一种复杂系统的涌现和演化规律。
2023-06-09 23:26:24
37
原创 《Java 基础教程和代码实例讲解》—— 想学Java看这一篇文章就足够了
Java技术栈生态是指Java生态系统中的各种技术和工具,包括Java语言、JVM、Java框架、数据库、Web开发、移动开发、云计算等。下面将对Java技术栈生态进行总结。
2023-06-09 22:56:08
44
原创 Spark基础教程和代码实例
Spark是一个快速的大数据处理框架,它可以处理PB级别的数据。Spark的核心是基于内存计算的分布式计算引擎,它可以在集群上运行,支持多种编程语言,包括Java、Scala、Python等。Spark提供了丰富的API和工具,可以方便地进行数据处理、机器学习、图计算等任务。Spark提供了丰富的API和工具,可以方便地进行数据处理、机器学习、图计算等任务。SparkContext:创建一个SparkContext对象,用于连接Spark集群。
2023-06-09 22:18:56
38
原创 【编程实践】Git命令基础教程和代码实例讲解
Git是一个分布式版本控制系统,最初由Linus Torvalds开发,现在已经成为了一个非常流行的版本控制系统。分布式:Git将代码存储在多个服务器上,每个开发者都有自己的本地副本,可以进行修改和提交。快照管理:Git使用快照来记录代码的历史变化,可以方便地回滚到之前的版本。分支管理:Git支持分支管理,可以在不同的分支上进行开发和测试,避免了代码冲突的问题。远程协作:Git支持远程协作,可以方便地与其他开发者一起开发项目。
2023-06-09 21:30:45
26
原创 怎样开发一个类似notionAI的系统?使用java语言。详细方案,实例代码。
要开发一个类似NotionAI的系统,首先需要了解NotionAI的功能和架构。NotionAI是一个基于人工智能的知识库管理系统,它可以自动整理、分类和搜索知识库中的信息。
2023-06-09 20:14:05
30
原创 【架构实战】如何通过 langchain 把LLM大模型能力集成到企业应用中?
LLM(Language Model)是一种基于深度学习的语言模型,它可以通过大规模的文本数据训练而成,并可以用于许多自然语言处理任务,如文本生成、情感分析、语义理解等。由于 LLM 模型能够处理大量的文本数据,因此它们通常具有非常强大的文本预测和生成能力。LLM 模型通常具有大量的参数,因此在本地计算机上进行训练和推理可能非常困难。但是,使用云计算和分布式计算技术,可以轻松地训练和推理大规模的 LLM 模型。
2023-06-09 18:28:43
40
原创 技术领导者如何做技术规划?
技术规划是指针对企业技术发展的长期规划,它必须与企业的战略目标和业务需求相一致,从而确保企业的技术能够满足未来的需求。技术规划的目的是确定技术发展的方向和重点,为企业未来的技术投资和发展提供指导。技术规划需要考虑技术的可行性、成本效益、风险和可持续性等因素。技术规划是技术领导者需要关注的重要问题之一。技术领导者需要根据企业的实际情况和业务需求,制定出长期的技术规划,为企业未来的技术投资和发展提供指导。技术规划的流程包括明确业务需求、分析技术趋势、确定技术方向、制定技术路线图和实施技术规划。
2023-06-09 17:47:13
31
原创 普通人应该如何应对大模型时代的人工智能变革带来的挑战和机遇?
大模型时代为普通人带来了巨大的机遇和挑战。普通人应该积极应对大模型时代的挑战,提升自身技能和能力,保持学习和创新的态度,加强对隐私和安全的保护,积极参与社会和政治事务,培养良好的心态和行为习惯。同时,普通人也应该抓住大模型时代的机遇,学习和应用人工智能技术,利用大数据和云计算等技术,参与人工智能领域的研究和创新,创业和创新,加强国际化交流和合作,为自己和社会创造更多的价值和贡献。随着人工智能技术的不断发展,大模型时代已经到来。这意味着我们可以训练更大、更复杂的神经网络模型,从而实现更为精准的预测和决策。
2023-06-09 16:04:05
52
原创 大模型真的带来生产力变革了吗?
大模型是当今世界上最为热门的技术之一,它可以带来生产力的显著提升和商业价值的巨大拓展。然而,大模型的应用也带来了一些问题和挑战,需要我们加强对这些问题和挑战的认识和思考,寻找解决方案和措施,让大模型的应用更加普惠和公平,同时保护个人的隐私和权利,保障企业和组织的数据安全和商业利益。
2023-06-09 15:27:48
39
原创 深度学习新突破:AI大模型革命引领人工智能未来 —— AI大模型革命带来的思考
随着深度学习技术的不断发展,AI大模型革命已经成为人工智能领域的一次重要突破。这一革命的引领者们正在不断推动着AI技术的前沿,为人类带来了更加智能化的未来。AI大模型革命的核心在于构建更加庞大、复杂的神经网络模型。这些模型可以处理更加丰富、复杂的数据,从而实现更加精准、高效的人工智能应用。同时,这些模型还可以不断地进行优化和迭代,不断提高自己的性能和准确度。在AI大模型革命带来的思考中,我们需要认识到这一革命所带来的机遇和挑战。
2023-06-09 15:18:03
43
原创 开源微调大型语言模型 (LLM) 列表
BigCode 的 StarCoder |大科学的绽放 |大脑的大脑-GPT |EleutherAI的GPT-J,GPT-NeoX,Polyglot和Pythia |GLM |谷歌的火烈鸟、FLAN 和 PaLM |H2O.ai的 h2ogpt |实习生 |Meta's Galactica, LLaMA, and XGLM |马赛克ML的MPT |英伟达的尼莫 |开放法律硕士 |雷普利特的代码 |RWKV |稳定AI的稳定LM |TII的猎鹰法学硕士|在一起的红睡衣-煽动。多语言均衡能力的大型语言模型。
2023-06-09 11:38:18
44
原创 【AI人工智能】用于代码生成的大型语言模型 Large Language Models for Code Generation
我将代码生成 LLM 视为一种非常强大的生产力工具,它可以帮助开发人员专注于真正重要的事情,而不是死记硬背“我如何在 javascript 中做 X”或“在 Pandas 中做 Y 的方法名称是什么”。该脚本将遍历指定文件夹中的所有文件,读取每个以“.html”结尾的文件的内容,并打印该文件的标题。在第 2 部分(将于 5 月 18 日发布)中,我们将探讨代码生成 LLM 的更多高级功能、这项技术的发展方向,以及我们是否应该期望软件开发人员在不久的将来随时被 LLM 取代。
2023-06-09 03:46:06
140
原创 LANCHAIN:通过可组合性构建 LLM 应用程序 LANGCHAIN: BUILDING LLM APPLICATIONS THROUGH COMPOSABILITY
该报告描述了该模型的架构、预训练、微调、可扩展性和评估程序,以及与其部署相关的潜在安全挑战,例如偏见、虚假信息、过度依赖、隐私、网络安全、扩散和更多的。该报告还承认,在可靠性很重要的情况下应谨慎使用 GPT-4 的输出,并且该模型的功能和局限性会带来重大的安全挑战,需要进一步研究和干预。J.A.R.V.I.S-like AI 的概念曾经是漫威电影中遥不可及的梦想,现在正迅速成为可以想象的现实。该框架提供了快速管理、优化和序列化的功能,内存、代理和链实现的标准接口,并与端到端应用程序的其他工具集成。
2023-06-09 03:42:41
154
原创 让生成式 AI 安全、值得信赖且更相关 Making Generative AI Safe, Trustworthy, and More Relevant
也许 Grounded Generation 最重要的品质是底层生成模型不需要在您的数据上进行训练,以便您使用您的数据进行生成。它通过首先从您的数据(并且仅从您的数据)中检索最相关的事实来实现这一点根据您的提示,然后仅总结这些事实。这是一个耗时的过程,对于最大的模型,即使不是几个月,也需要数周,因此在新数据可用和可用于生成之间存在滞后时间。Vectara 的 Grounded Generation 方法不受此限制,因为我们的检索模型不需要针对新数据进行训练,以便能够有效地找到与您正在寻找的内容相关的事实。
2023-06-09 03:34:14
162
原创 大型语言模型用例和应用 Large Language Models Use Cases and Applications
在这一点上,许多人都听说过一些最值得注意的 LLM 和 LLM 支持的应用程序,例如 ChatGPT 和 DALL-E(它通过“带有聊天对话框的计算机油画”生成了这篇文章的标题图像屏幕提示)。其中一些是开源的,而另一些是闭源的,一些是您必须下载并捆绑到您的应用程序中的软件工件,而另一些则是通过 API 使用的服务。我们将看到熟悉的炒作周期的一个版本,例如这份关于 AI 的 2022 年报告,随着 LLM 领域的发展而上演。这些较低的成本将有助于加快 LLM 生态系统的发展,最重要的是将降低最终用户的成本。
2023-06-09 03:31:35
126
原创 如何基于 LLM 集成应用程序 API ?How a LLM-based application, integrates a custom function (API)?
我想到的是在 GPT3 完成请求之前捕获用户“意图”,这样你就可以在 GPT3 顶部实现一个通常的意图分类器。这里的一般问题是如何创建基于 GPT3 的会话应用程序能够完成面向任务的确定性活动,超越生成系统的“部分非确定性”阐述。但是,如果用户在启动对话的中间询问另一个位置的天气情况,例如纽约?现在假设您想让聊天机器人知道今天特定位置/城市的真实天气预报,例如默认情况下我所在的地方(热那亚,意大利)。因此,在 LLM 之上,python“控制器”程序层可以用相应函数的实际调用替换 LLM 生成的后退命令。
2023-06-09 03:18:11
159
原创 使用 LLamaIndex 构建全栈 Web 应用程序的指南 A Guide to Building a Full-Stack Web App with LLamaIndex
为了支持前端的一些功能,我调整了 Flask API 的一些响应,并添加了一些功能来跟踪哪些文档存储在索引中(LlamaIndex 目前不支持用户- 友好的方式,但我们可以自己扩充它!我们从用 python 编写的基本“Hello World”Flask 服务器,到功能齐全的 LlamaIndex 支持的后端,以及如何将其连接到前端应用程序。这听起来很可怕,但还不错!使用这三个查询,我们可以构建一个健壮的前端,允许用户上传和跟踪他们的文件、查询索引、查看查询响应以及有关哪些文本节点用于形成响应的信息。
2023-06-09 03:12:57
150
原创 使用 LANCHAIN 构建 LLM 支持的应用程序:全面的分步指南
随着 ChatGPT 获得广泛认可,以及像谷歌这样的科技巨头提出了他们自己的类似 ChatGPT 的解决方案,语言模型,尤其是 LLM,已经成为科技领域的主要话题。它提供了一组工具、组件和接口,使构建基于 LLM 的应用程序变得更加容易。通过利用机器学习算法的力量,LangChain 提供了一个安全透明的平台来构建创新应用程序,这些应用程序可以重塑我们与技术交流和交互的方式。代理:代理是部署用于与用户交互的 LangChain 的单个实例,每个代理都有独特的提示、记忆和针对特定用例或应用程序量身定制的链。
2023-06-09 03:09:19
170
原创 构建 LLM 支持的应用程序 Building LLM-powered Applications
此外,一些经过微调的中型模型示例引起了研究人员和开发人员的注意,为他们中的更多人创建自己的自定义 LLM 铺平了道路。用于构建 LLM 支持的应用程序的工具和资源的激增为开发人员打开了一个充满可能性的新世界。随着越来越多的组织投资于他们自己的定制 LLM,并且开源资源变得更广泛可用,LLM 支持的应用程序的前景将变得更加多样化和分散。该库提供 50 多种与流行的 NLP 库和任务兼容的测试类型,在部署到生产系统之前解决模型质量方面的问题,例如稳健性、偏差、公平性、表示和准确性。2. BNH 的微波炉。
2023-06-09 03:06:02
152
原创 在生产环境中构建 LLM 应用程序
为了使提示调优起作用,您需要能够将提示的嵌入输入到您的 LLM 模型中,并从这些嵌入中生成令牌,目前,这只能通过开源 LLM 而不能在 OpenAI API 中完成。但是,对于提示工程,如果您想使用更新的模型,则无法保证您的所有提示在新模型上仍能按预期工作,因此您可能不得不重新编写提示。针对基于不同日期的问题的 SituatedQA 数据集的一项观察是,尽管 LM(预训练截止日期为 2020 年)可以通过 Google 搜索访问最新信息,但其在 2020 年后问题上的表现仍然比 2020 年前问题差很多。
2023-06-09 03:03:45
145
Will AI Fix Work? 工作节奏超过了我们的跟上能力 人工智能有望创造一种全新的工作方式
2023-05-17
THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Inte
2023-04-06
Kotlin Coroutines by Tutorials (1st Edition)
2021-04-28
Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf
2021-04-28
A Brief History of Artificial Intelligence
2021-04-28
An introduction to functional programming through lambda calculus.PDF.zip
2019-09-22
《Kotlin项目实战开发》第3章+类型系统与可空类型
2017-09-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人