- 博客(126381)
- 资源 (6)
- 收藏
- 关注
原创 【FreeManus】生产级 Agentic AI 智能体式系统导论 Introduction to Production-Grade Agentic AI Systems
从形式上定义,智能体式AI系统是一种计算实体,它在特定环境中运行,感知环境状态,并通过执行动作实现预设目标。Astot→atst1Astot→atst1Astot→atst1Astot→atst1AAA= 智能体函数sts_tst= 时间ttt时的当前系统状态oto_tot= 时间ttt时从环境中获取的观测信息ata_tat= 智能体在时间ttt。
2026-01-12 01:48:18
701
原创 【FreeManus】AI Agent 架构师的30项必备修炼 / 光子AI - Photon.ai
《AI Agent架构师的30项必备修炼》为AI Agent开发者提供系统化的成长路径,涵盖从基础理论到前沿技术的完整知识体系。全书分为基础筑基、核心架构、工程落地和前沿进阶四大模块,包含30项核心技能修炼,如ReAct架构设计、多Agent协作系统、具身智能实现等。通过理论讲解与代码实践相结合(如马尔可夫决策过程、极简ReAct Agent实现等),帮助读者掌握AI Agent系统设计的关键技术。该书适合不同阶段的开发者:入门者可系统学习基础理论,进阶者聚焦架构设计,企业架构师侧重工程落地,研究者探索前沿
2026-01-12 01:33:30
591
原创 【光子AI 2026 企业级 Agent 架构指南】别再把 Skill 当 Tool:Agent Skills × MCP 企业级落地全指南(最新定义澄清 + 场景大全 + 选型决策树+安全工程清单)
摘要: 2026年企业级AI架构迎来两大核心标准——Agent Skills与MCP(Model Context Protocol),分别解决流程标准化与系统集成难题。Agent Skills通过“文件夹化能力包”(SOP+脚本+模板)固化专家流程,确保输出一致性;MCP则以类USB-C的协议统一外部系统接入,降低集成成本。两者差异显著:Skills专注程序性知识(如财报生成),MCP侧重动态连接(如跨平台数据调用)。实际场景中,复杂需求(如智能客服)需组合使用——MCP为骨架提供连接能力,Skills为大
2026-01-08 00:48:55
359
原创 【光子AI】一切皆是映射:映射即计算、函数、关系、变换、运动、流(下)
在数学和物理学中,变换通常指将一个数学对象或物理系统转换为另一个对象或系统的操作。变换是映射在动态语境下的自然延伸。形式化定义设XXX和YYY是两个集合(或空间),一个变换TTT是从XXX到YYYTX→YTX→Y可迭代性TTT可以反复应用于自身,即TnT∘T∘⋯∘TTnT∘T∘⋯∘T(n次)可逆性可能:可能存在逆变换T−1T^{-1}T−1使得T−1∘TIT−1∘TI(恒等变换)参数化。
2026-01-03 14:19:57
817
原创 【光子AI】一切皆是映射:映射即计算、函数、关系、变换、运动、流(上)
在信息爆炸的时代,我们被各种复杂的概念、系统和现象所包围。从计算机程序的执行,到自然界的物理规律;从社会关系的网络,到个体思维的运转,世界似乎由无数看似独立却又相互关联的碎片构成。我们是否能够找到一个统一而简洁的视角,来理解这纷繁复杂的一切?这正是本书试图回答的核心问题。本书的缘起,源于一个简单却深刻的观察:无论是数学中的函数、计算机科学中的计算、物理学中的运动,还是社会学中的关系,其底层都蕴含着一种共通的结构——映射。映射,即从一个集合到另一个集合的对应关系,它不仅是抽象的数学工具,更是理解世界运作方式的
2026-01-03 14:18:39
1163
原创 【光子 AI】在实际业务中做好 AI Agent的关键是什么?
在实际业务中实现高效AI Agent的关键在于工程化与业务化的系统融合,而非单纯追求模型规模或概念创新。核心要点包括:精准定义业务级问题,确保任务可拆解、可判定;强化上下文工程与确定性工具调用;建立完善的评价体系与失败路径设计;重构组织流程以适应Agent运作;优先开发窄领域Agent再扩展为网络。最终目标是实现问题真实、边界清晰、结果可控、价值可量化的AI Agent解决方案。
2025-12-24 11:09:37
178
5
原创 【光子 AI 】整理 AI 人工智能发展历史上里程碑事件的关键论文清单和下载地址
本文整理了人工智能发展史上15篇具有里程碑意义的关键论文,涵盖1943年至2020年间的重要突破。清单按时间顺序排列,每篇论文包含:发表年份、标题、主要作者、历史意义说明以及可直接下载的PDF链接。这些论文代表了AI发展的关键节点,从早期的神经网络理论奠基(McCulloch&Pitts,1943)、感知机模型(Rosenblatt,1958)、反向传播算法(Rumelhart等,1986),到深度学习的复兴(Hinton等,2006)、AlexNet突破(2012),以及近年来的Transform
2025-12-18 13:05:02
717
原创 【光子 AI 】《Python 编程极简教程》 面向零基础到初级读者的实用入门手册
《Python编程极简教程》摘要(140字) 本教程为零基础学习者提供Python快速入门指南。首先介绍Python作为简单通用的解释型语言,适合数据分析、AI、Web开发等领域。详细讲解开发环境搭建(Windows/macOS)、基础语法(变量/数据类型/流程控制)、函数使用及模块导入。通过"Hello World"示例引导读者编写首个程序,并提供计算器、文本统计等实战案例。强调实践导向,建议学习者多写代码解决问题,最后给出面向对象编程、标准库等进阶方向。全篇突出Python易学实用的
2025-12-18 12:53:04
222
原创 【光子 AI 】AI 大模型 Transformer 架构的完整训练计算过程:一个可交互的可视化动画演示
本文介绍了一个Transformer架构训练过程的可视化动画演示系统。该系统采用交互式设计,通过17个步骤完整展示大模型训练流程,包括输入处理、注意力机制、前馈网络、损失计算和参数更新等关键环节。可视化界面包含主视图区、矩阵面板和控制面板,使用不同颜色编码区分功能模块(如蓝色表示输入数据、绿色表示注意力机制)。系统提供播放控制、单步执行和速度调节功能,支持开发者直观理解Transformer模型的训练动态。HTML源代码展示了响应式UI设计,采用现代CSS技术实现美观的渐变效果和交互元素。
2025-12-18 03:25:13
150
原创 【光子 AI 】LangGraph 底层图计算算法原理详解:Pregel 图计算算法动画演示
Pregel 图计算算法动画演示:最短路径算法 摘要:本文展示了一个基于网页的Pregel图计算算法动画演示,专注于最短路径算法的可视化实现。该演示采用SVG技术构建交互式图形界面,通过动画效果直观展示Pregel计算模型的核心概念,包括顶点状态变化(活跃/非活跃)、消息传递机制和超步同步屏障。界面设计采用深色背景与渐变色彩,突出算法运行时的动态效果,如顶点状态高亮、消息传递路径以及同步屏障脉冲动画。技术实现上结合了HTML5、CSS3动画和JavaScript,为学习者提供理解Pregel分布式图计算模型
2025-12-18 02:28:37
84
原创 【光子 AI 】LangGraph 计算图原理:向小学生讲清楚 Pregel 图计算算法原理与本质,并给出极简源代码实现【分别给出 Java、Rust、Go 和 Python 语言版本】
Pregel图计算算法通过"传声筒游戏"生动解释了其原理:将计算任务分解为多个点(顶点)之间的消息传递,每个顶点独立处理收到的信息并更新状态,通过多轮迭代最终达成全局目标。文章提供了极简实现代码(Python、Java、Rust、Go),以寻找图中最大值为例,展示了顶点如何接收消息、比较数值并传播结果的过程。这种分布式计算模型特别适合处理大规模图数据,每个顶点只需关注局部信息即可协同完成全局计算。
2025-12-18 01:30:46
89
原创 【光子 AI 】LangGraph:Graph = 有向有环图 + 状态机实现原理详解:数据结构模型与核心算法代码实现逻辑解析
LangGraph核心原理解析:基于Pregel模型的消息传递图,结合有向有环图和状态机特性。关键实现包括:1) 共享状态机制(TypedDict/Pydantic模型)配合Reducer逻辑实现状态更新;2) 图拓扑结构通过邻接表维护节点和条件边;3) 检查点机制支持状态持久化和恢复。运行时采用Pregel循环算法,通过超级步迭代执行节点函数、应用状态归约、条件路由下一批节点,同时支持人工中断和异步并行处理。该架构使LangGraph具备循环执行、条件跳转等DAG无法实现的动态流程控制能力。
2025-12-17 02:51:36
807
5
原创 在 MultiAgent 系统中,多个 Agent 之间是怎样协作通信和共享上下文的?给出详细的实现原理和框架案例深度解析(例如 LangChain)
多Agent系统中的协作通信与上下文共享机制解析 摘要: 多Agent系统的协作通信主要通过三种架构模式实现:1)集中式协调(Orchestrator模式),2)点对点消息传递,3)黑板/共享内存机制。上下文共享则采用消息链式传递、结构化共享状态对象或外部记忆存储三种方式。以LangGraph为例,它采用有状态图(StateGraph)模型,每个Agent作为节点对共享状态进行读写,通过节点连接定义协作路径,实现高效上下文共享。典型实现包含定义State类型、构建Agent节点、设置条件边等步骤,兼顾灵活性
2025-12-10 23:42:07
841
1
原创 【Java 面试宝典】30 道 AI 大模型与Agent 算法工程研发与后端工程开发技术面试题宝典(精选面试题和面试必过的答案完整详细解析)
考察点:生成范式、模型家族。自回归 LM:建模 p(x₁,…,x_T) = ∏ p(x_t | x_<t)逐 token 预测下一个词,典型如 GPT。Encoder 将源序列编码成隐表示Decoder 条件生成目标序列:p(y | x)区别:自回归 LM:单序列建模,适合续写、对话、补全。Seq2Seq:明确「输入→输出」映射,适合翻译、摘要等有「源-目标」对。现代很多任务通过「指令 + 上下文」把任务转成纯自回归生成,不再需要显式 Encoder。考察点。
2025-12-10 16:38:03
1003
5
原创 【Java 面试宝典】30 道 Java 面试题宝典(精选面试题和面试必过的答案完整详细解析)
下面给你一份「30 道 Java 面试题宝典」,偏向通用 Java 开发/后端岗位,题目覆盖:每题包含:你可以当作“背诵提纲”来用,真正面试时再展开举例即可。考察点:基本功、OOP 理解。必会:加分:考察点:OO 设计、Java 特性。必会:抽象类()接口(,Java 8+)使用场景:加分:考察点:参数传递机制,常见坑。必会:加分:考察点:对象比较、集合 key、基础扎实度。必会:重写 时:加分:考察点:字符串、性能、线程安全。必会:加分:考察点:异常体系、编码习惯。必会:加分:考察点:集合底层、时间复杂
2025-12-10 16:37:34
963
1
原创 【深度解析】AI Agent 上下文工程(Context Engineering)的核心价值!在电商客服场景中,如何构建有效的上下文窗口(如用户历史订单、咨询记录)以提升 Agent的回答质量?
深度解析上下文工程在电商客服中的应用 本文探讨了上下文工程在优化电商客服Agent回答质量中的关键作用。随着大模型窗口扩展,上下文对齐成为落地瓶颈。文章提出一套系统方法论: 核心问题:客服Agent因上下文缺失导致回答不准确,表现为重复追问、答非所问等,严重影响效率和用户体验。 解决方案: 四阶九步构建法:从上下文建模到投放,涵盖实体设计、多路召回、动态排序和记忆压缩。 开源框架Context4CS:集成Python、Milvus等技术,支持多租户和多模态数据。 关键价值:提升上下文召回率、信噪比和利用率,
2025-11-08 04:11:51
616
1
原创 万字详解:程序员在研发项目需求中与协作方高质量沟通指南——沟通,是程序员最值得投资的软技能
本文系统性地介绍了程序员如何在研发项目中与协作方进行高质量沟通。文章首先强调沟通是程序员职业成长的关键技能,提出从"代码实现者"到"问题解决者"的心态转变。然后从五个核心原则展开:转变角色定位、换位思考、主动沟通、聚焦共同目标和追求共识。 在方法论部分,文章详细拆解了需求沟通的四个阶段: 需求启动与澄清阶段:强调会前准备、高效提问和会后跟进; 需求分析与拆解阶段:包括MVP思维、边缘案例识别和用户故事定义; 技术方案设计与评审阶段:涵盖技术翻译、风险评估和多方案提供;
2025-11-06 01:06:30
1591
3
原创 万字长文:深入解析“上下文工程”(Context Engineering)——驾驭百万Token时代的AI性能缰绳:五种典型的“上下文失效”模式与解决方案
信息过载:上下文超出模型的“有效处理容量”,关键信息被冗余、错误内容掩盖;注意力稀释:模型的注意力资源无法在长上下文中均匀分配,导致关键信息被忽略;一致性缺失:模型缺乏对上下文信息的“校验、冲突处理”机制,无法保证输入的有效性与逻辑性。Context Engineering不是“对抗”大模型的上下文,而是“驾驭”它。在大模型的上下文窗口持续扩容的今天,单纯追求“更长的窗口”已无法解决实际问题——真正的竞争力,在于如何让大模型在海量信息中精准定位核心、规避风险、高效输出。
2025-10-25 12:58:12
3195
原创 万字详解:36岁中国程序员未来三十年人生规划2025-2055
中国程序员36岁后的30年人生规划 36岁的中国程序员正处于职业与人生的关键转折点。面对技术迭代、AI崛起和行业变革,未来30年规划应分三阶段推进: 36-40岁(转型期):选择技术深耕或管理转型,聚焦AI、云计算等新兴领域,突破职业瓶颈,提升软技能。 41-50岁(黄金期):发展多元化职业路径,打造个人品牌,建立副业与投资组合,应对职业风险。 51-65岁(价值期):转向咨询、教育等柔性工作,参与公益活动,实现经验传承与人生价值。规划需兼顾技术敏感度、财务稳健和生活平衡,在快速变化的行业中保持持续竞争力与
2025-07-07 01:23:20
6063
14
原创 《Agentic AI 实战》第7章 DeepResearcher:基于MCP和browser-use实现深度研究Agent
DeepResearcher:基于MCP与浏览器自动化的深度研究Agent DeepResearcher是一个结合MCP(Model Context Protocol)和browser-use技术的智能研究Agent系统,实现了网络搜索、学术论文分析、网页内容提取与结构化报告生成的全流程自动化。系统采用分布式微服务架构,包含研究服务器、客户端服务器、LangGraph工作流和Streamlit前端等核心组件。 技术亮点包括: 通过MCP协议标准化连接LLM与外部工具 使用browser-use技术进行深度网
2025-06-23 23:10:15
1273
原创 程序员职业生涯系列:关于技术能力的思考与总结
引子儒、释(佛)、道三家思想:释(佛家):处理好人与心的关系,我们要战胜自己;儒(儒家):处理好人与人的关系,我们要团结好他人;道(道家):处理好人与自然的关系,我们应该顺势而为。明人陆绍珩《醉古堂剑扫》自叙有云:一愿识尽人间好人,二愿读尽世间好书,三愿看尽世间好山水。或曰:静则安能,但身到处,莫放过耳。旨哉言乎!余性懒,逢世一切炎热争逐之场,了不关情。惟是高山流水,任意所如,遇翠丛紫莽,竹林芳径......
2022-08-29 10:00:40
135718
241
原创 LRU 缓存。
在本章中,我们将设计并实现一个功能完善、高性能的LRU缓存库,支持基本的get/put操作、过期时间、最大容量限制、命中率统计等高级功能。这个项目将帮助我们深入理解LRU的实现细节和性能优化技巧。项目目标实现基础LRU缓存功能(get/put操作)支持键值对的过期时间设置添加命中率、访问次数等统计功能实现线程安全版本,支持多线程并发访问提供缓存持久化与加载功能进行性能测试与优化技术栈编程语言:Python 3.9+开发工具:PyCharm/VS Code测试框架:pytest。
2026-01-22 23:25:18
255
原创 讲一下Data Mesh。
比如大模型训练部分,可以举OpenAI的例子,OpenAI需要海量的文本数据,而Data Mesh的“文本数据产品”(比如新闻领域的“实时新闻数据产品”、社交领域的“用户评论数据产品”)可以提供结构化、语义一致的数据,提高训练效率。战略建议部分,要具体可行,比如试点选择,要选“业务需求明确、技术能力强、数据量适中”的领域,比如电商的营销域,因为营销团队需要实时数据做推荐,技术能力强(有懂Flink的工程师),数据量适中(最近30天的用户行为数据)。如果需要,如何简化架构?
2026-01-22 22:24:39
507
原创 金融行业AI系统架构演进:如何平衡性能、成本与合规性?
本文将以金融AI系统架构的演进为主线,系统剖析从单体架构到云原生智能架构的发展历程,重点解构性能优化、成本控制与合规嵌入三大核心命题。我们将通过12个真实金融案例、8种架构模式对比、15+关键技术指标的量化分析,构建"三角平衡模型",并提供可落地的架构设计方法论与最佳实践。无论是高频交易系统的微秒级响应优化,还是智能投顾的合规性架构设计,抑或是风控模型的成本敏感型部署策略,都将在本文中找到对应的解决方案。
2026-01-22 21:30:39
323
原创 算法题:字符串转换成整数。
本文将深入探讨"字符串转换成整数"这一经典算法问题,从问题背景、核心概念、算法原理到实际应用进行全方位解析。我们将详细分析各种转换场景、边界情况和异常处理策略,提供多种实现方案,并通过丰富的代码示例和图表说明帮助读者彻底掌握这一重要编程技能。无论您是编程初学者还是有经验的开发者,本文都将为您提供深入的技术洞察和实用的编程技巧。在计算机科学和软件开发中,数据类型转换是一项基础而关键的操作。其中,字符串与整数之间的转换尤为常见且重要。
2026-01-22 20:41:59
395
原创 MAC 怎样加密压缩 zip 包?
Mac加密压缩ZIP包可有效隐藏文件内容,但需注意关键细节:常规检测无法识别加密包内的图像内容,但会暴露文件名和类型。终端默认的ZIP 2.0加密安全性较低,推荐使用Keka/BetterZip的AES-256加密。为确保安全,建议重命名文件为无意义字符并删除后缀,必要时可二次修改压缩包后缀名。密码需设置12位以上包含字母、数字和符号的组合。加密仅保护内容,解压后文件仍可被检测,因此需妥善保管密码。
2026-01-22 19:54:51
11
原创 AI应用架构师的关键策略:7个化学智能体案例,教你快速落地
想象一下:你是一家科技公司的AI架构师,老板拍着桌子说"三个月内把这个AI推荐系统上线,用户量要撑住100万"。你团队花两周搭好了模型,却发现数据预处理模块和模型训练模块接口不兼容;好不容易解决了接口问题,又发现实时推理时GPU资源不够;等资源问题解决了,用户反馈"推荐结果总是重复"——原来冷启动模块没考虑!三个月后,系统勉强上线,却像一座摇摇欲坠的危楼,每天需要3个工程师轮流"救火"。这不是虚构的故事,而是80%的AI项目真实写照。
2026-01-22 19:41:18
483
原创 超越编码:IT软技能完全指南
学生们在我们开始讨论范围定义时常常翻白眼。“我们不能直接开始编码吗?”他们问道。但多年的教学经验表明:那些花时间把范围定义得非常清晰的团队,最终能够庆祝成功,而不是为了修正根本的误解而熬夜。定义范围意味着三件事:你正在构建的东西(目标)、你正在交付的东西(实际内容),以及你绝对不做的事情(边界)。最后这部分?至关重要,而且常常被忽略。捕捉需求项目管理不仅仅是一系列工具和技术——它是一种思考复杂工作的方式,这种方式能帮助你持续交付成果。
2026-01-22 03:57:30
35
原创 AI应用架构师教你:如何让企业数字化管理平台更贴合业务需求?
企业数字化管理平台(以下简称"数字化平台")是支撑业务运转的核心基础设施,涵盖从客户管理(CRM)、供应链(SCM)、人力资源(HRM)到财务管理(FMS)等全流程。技术驱动陷阱:IT团队专注于"用什么技术"(微服务、云原生、AI算法),而非"解决什么业务问题";需求传递失真:业务部门说"我要一个报表系统",IT部门交付后发现实际需要的是"实时库存预警机制"——需求在传递中层层衰减。AI应用架构师的核心价值,正在于打通业务需求与技术实现的鸿沟。
2026-01-22 02:40:37
74
原创 【书单推荐】人类经典 100 本必读书 / 光子图书
以下清单综合了多个权威机构、大学、媒体的“一生必读”书单(如:哈佛、耶鲁、牛津、剑桥、清华、北大、纽约客、时代周刊、卫报、BBC、豆瓣、纽约时报、企鹅兰登、读库、理想国、罗辑思维等),同时参考了全球实际销量、文学史地位、哲学深度、影响力等维度,最终精选出100本真正值得一读再读的经典。(严格按重要性排序,前30本是人类文明的顶尖之作,后70本也是大师级作品)
2026-01-22 02:33:35
367
原创 智能数据治理平台的性能测试:AI应用架构师的实战方案(附工具清单)
首先,我们需要一种方式来定义复杂的混合场景。description: "模拟24小时混合负载,包含元数据查询、数据入库和AI分类"workloads:weight: 70 # 70%的流量weight: 20 # 20%的流量schedule: "every 1h" # 每小时触发一次数据入库流水线weight: 10 # 10%的流量concurrency: 5 # 持续保持5个并发分类请求项目名称项目目标。
2026-01-22 01:46:38
167
原创 揭秘智能财务AI助手架构设计的卓越架构实践
智能财务AI助手是一种融合了人工智能、机器学习、自然语言处理、知识图谱等先进技术,能够理解、推理和执行复杂财务任务的智能系统。它不仅能自动化重复性财务工作,还具备学习能力、上下文理解能力和决策支持能力,能与人类财务人员形成协作伙伴关系,共同提升财务工作的效率、准确性和洞察力。认知理解能力:能够理解非结构化财务文档(如发票、合同、银行对账单)的内容和上下文,而不仅是处理结构化数据自主学习进化:通过机器学习从数据中学习财务规则和模式,而非仅执行预定义的固定规则推理决策支持。
2026-01-22 00:57:59
542
原创 《AI应用架构师如何增强企业元宇宙安全框架的防御力》
企业元宇宙安全的问题空间是一个多维复杂系统,需要从技术、业务、用户和监管等多个维度进行定义和分析。AI应用架构师需要清晰理解这一问题空间,才能设计出有效的防御框架。技术维度问题空间分布式架构安全多平台互联带来的信任边界模糊节点异构性导致的安全标准不统一边缘计算设备的安全防护薄弱分布式账本与智能合约漏洞多模态交互安全语音、手势、眼动等新型输入方式的认证安全AR叠加层内容的真实性验证空间计算环境中的定位欺骗风险多模态数据融合带来的推理攻击面扩大沉浸式体验与安全平衡。
2026-01-21 20:38:20
484
原创 如果让你带一个3-5人的小团队,你会如何管理?
选积木(核心概念):认识团队管理的“基础零件”——角色、沟通、目标等画图纸(流程设计):用Mermaid图画出团队运作的“路线图”搭底座(团队组建):如何让3-5个人从“陌生人”变成“战友”拼塔楼(任务管理):把大目标拆成“跳一跳够得着”的小任务刷油漆(团队文化):用“小仪式”让团队有温度、有战斗力防倒塌(问题解决):遇到吵架、偷懒、拖延时怎么办?展示成果(实战案例):看别人如何用这些方法带团队拿结果角色定位。
2026-01-21 19:37:16
395
原创 一切皆文件:Unix通信的元模型 从BSD到现代Unix:套接字API的进化路径
但在当时,网络编程面临着碎片化的困境:不同的网络设备和协议栈提供各自专用的编程接口,程序员需要针对每种协议编写特定的通信代码,这严重阻碍了网络应用的开发效率。套接字(Socket)是Unix IPC的通用扩展,它支持全双工通信,既可以用于本地进程间通信(AF_UNIX域),也可以用于跨机器的网络通信(AF_INET/AF_INET6域)。这个调用的设计遵循Unix的资源分配模型:内核为进程分配一个未使用的整数作为文件描述符,并在内核空间中创建对应的套接字结构体,存储网络上下文信息。
2026-01-21 02:55:20
60
原创 `StringBuilder`为什么是线程不安全的?那`StringBuffer`呢?
线程不安全:因其继承的append()等方法未同步,导致多线程下对value数组和count变量的竞态条件,表现为数据丢失、错乱或数组越界。线程安全:通过同步方法保证所有修改/读取操作互斥执行,避免竞态条件,同时通过优化toString()性能。选择依据:单线程用(性能优先),多线程共享用或(安全优先)。/** 存储字符的底层数组 *//** 当前已存储的字符数量(字符串长度) */int count;// ...其他方法这两个变量是临界资源:所有修改字符串的操作(如append。
2026-01-21 02:34:16
241
原创 Linux 系统修复过程记录:已知信息: Ubuntu 22.04(NVIDIA 显卡,显示器 DP连接)开机报错,屏幕一直闪
这个错误表明 NVIDIA 驱动的内核模块无法为您的内核 (6.5.0-44-generic) 编译。,然后告诉我具体的编译错误信息,我可以给出更精确的解决方案。,安装并配置 GCC-12,然后告诉我结果。选项(这是 GCC-12 新增的)。GCC-11 不支持。
2026-01-21 02:09:31
137
原创 谈谈你对云原生数据库(如TiDB, CockroachDB)的看法。
在云计算时代,传统数据库正面临前所未有的挑战。数据量爆炸式增长、业务需求快速变化、全球化部署要求,都推动着数据库技术的革新。云原生数据库应运而生,以其弹性扩展、高可用、自愈能力和按需付费等特性,成为现代数据基础设施的核心。本文深入剖析云原生数据库的设计理念与技术原理,重点对比分析两大代表性产品——TiDB和CockroachDB。我们将从架构设计、一致性模型、事务处理、扩展性等多个维度展开探讨,通过具体案例和代码示例展示其实际应用,并展望云原生数据库的未来发展趋势。
2026-01-21 01:43:10
773
《Kotlin项目实战开发》第3章+类型系统与可空类型
2017-09-30
ClickHouse 高性能、可扩展和低成本的OLAP数据库 陈光剑 20230912
2023-09-14
Will AI Fix Work? 工作节奏超过了我们的跟上能力 人工智能有望创造一种全新的工作方式
2023-05-17
THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Inte
2023-04-06
An introduction to functional programming through lambda calculus.PDF.zip
2019-09-22
Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf
2021-04-28
Kotlin Coroutines by Tutorials (1st Edition)
2021-04-28
A Brief History of Artificial Intelligence
2021-04-28
谁能讲讲?这元旦节到底是放了还是没放?#元旦节#
2025-12-27
2024 年可以实现 AGI 吗?
2024-01-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅