关闭

spoj LCM Sum

80人阅读 评论(0) 收藏 举报
分类:

一个数论定理 对于n >= 2 小于它与它互质的数的和 为 n*phi*(n)/2
然后lcm(a,b) = a * b / gcd(a, b)
时间太紧 所以打表预处理枚举每个数然后找到每个能整除它的数加上一部分欧拉函数的和

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cmath>
#define maxn 1000005
#define LL long long
using namespace std;
// 欧拉函数3
LL eular[maxn];
LL prime[maxn][15],num[maxn],flag[maxn],AM = 0;

void Eorue(){
    eular[1] = 1;
    for(LL i = 2;i < maxn; i++){
        if(eular[i] == i){
            eular[i] = i - 1;
            for(LL j = 2; j * i < maxn; j++){
                eular[i * j] = eular[i * j] * (i - 1) / i;
            }
        }
        //eular[i] += eular[i-1];
    }
}
LL ans[maxn];
int main()
{
    for(LL i = 1; i < maxn; i++) eular[i] = i;
    Eorue();
    for(LL i = 1; i <= 1000000; i++)
        for(LL j = 1; j * i <= 1000000; j++)
         {
            if(j != 1)ans[j * i] += j * i * (eular[j] * j / 2ll);
            else ans[j * i] += j * i;
         }
    int t;
    scanf("%d", &t);
    while(t--)
    {
        int n;
        scanf("%d", &n);
        printf("%lld\n", ans[n]);
    }
    return 0;
}
//277811686426000000
0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:39721次
    • 积分:2348
    • 等级:
    • 排名:第15814名
    • 原创:203篇
    • 转载:0篇
    • 译文:0篇
    • 评论:7条
    最新评论