图解线段树解约瑟夫环问题

文章介绍了如何使用线段树在O(nlogn)的时间复杂度内解决约瑟夫环问题。通过建立线段树并进行单点更新操作,可以跟踪环中每个人的出列顺序。示例给出了(7,3)-Josephus排列的解题过程,并强调理解环中相对位置的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算导上有这样一道题,假设n个人站成环形,且有一个正整数m<=n。从某个指定的人开始,沿环报数,每遇到第m个人就让其出列,且报数继续进行下去。执行这一过程,直到所有人出列。每个人出列的次序定义为整数1,2,3,…,n的(n,m)-Josephus排列。

例如,(7,3)-Josephus排列为(3,6,2,7,5,1,4)。

设计一个算法,时间复杂度要求O(nlogn)时间,使给定的整数n和m,输出(n,m)-Josephus排列。


对于约瑟夫环问题,如果是求最后一个出列的人,有O(n)的算法,这里就不介绍。

这里如果我们用循环队列来模拟的话,很明显时间复杂度是O(nm)的,而且代码比较难写。既然算导说有O(nlogn)的算法那就肯定有啦,答案是线段树。

下面我们画出线段树:


调用build(1,n,1)函数建树

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

int sum[N<<2];
int tree[N<<2][2];

void PushUp(int rt)
{
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}

void build(int l,int r,int rt)
{
    tree[rt][0] = l;
    tree[rt][1] = r;
    if(l == r)
    {
        sum[rt] = 1;
        return;
    }
    int m = (l+r)>>1;
    build(lson);
    build(rson);
    PushUp(rt);
}
rt表示根节点,数组tree[
题目: 每个人手里有个密码。开始给定一个正数m,做为报数上限,从某个人开始循环报数,报到m的人出列;再以该出列的人手中的密码为报数上限,依次报数。打印出列的人的序号的先后顺序。 一. 需求分析 1. 本演示程序中,人数n应为任意的,首先应输入一个值赋给初始报数上限m,程序应能自动保存出列人的序号和将出列的人所持的密码赋给m,再次作为报数上限,如此循环,直至所有人都出列为止。 2. 演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入相应数据(即每个人所持的密码),每个人的序号由程序自动分配。 3. 程序执行的命令包括: (1)构造链表;(2)输入数据;(3)执行报数,储存出列人的序号,删除出列人的信息以及把出列人的密码赋给m;(4)结束。 4. 测试数据 (1)m=20,n=7,7个人的密码依次为:3,1,7,2,4,8,4,首先m值为6,则这正确的出列顺序为6,1,4,7,2,3,5。 确的出列顺序为6,1,4,7,2,3,5。 二. 概要设计 为了实现上述操作,应以单向循环链表为存储结构。 1. 基本操作: code( ) 操作结果:构造空链表,若成功就初始化每个人的相关信息 code( ) 初始条件:线性链表存在 操作结果:释放指向出列的人的结点,并重新报数 2. 本程序包含三个模块: (1) 主程序模块; (2) 构造链表并输入每个人信息模块; (3) 释放结点模块;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值