线段树成段更新操作及Lazy思想(POJ3468解题报告)

就直接那POJ上面的例题来说吧,http://poj.org/problem?id=3468

此题题意很好懂:

 给你N个数,Q个操作,操作有两种,‘Q a b ’是询问a~b这段数的和,‘C a b c’是把a~b这段数都加上c。

需要用到线段树的,update:成段增减,query:区间求和

介绍Lazy思想:lazy-tag思想,记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。

在此通俗的解释我理解的Lazy意思,比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,它的节点标记为rt,这时tree[rt].l == a && tree[rt].r == b 这时我们可以一步更新此时rt节点的sum[rt]的值,sum[rt] += c * (tree[rt].r - tree[rt].l + 1),注意关键的时刻来了,如果此时按照常规的线段树的update操作,这时候还应该更新rt子节点的sum[]值,而Lazy思想恰恰是暂时不更新rt子节点的sum[]值,到此就return,直到下次需要用到rt子节点的值的时候才去更新,这样避免许多可能无用的操作,从而节省时间 。

下面通过具体的代码来说明之。(此处的函数名和宏学习了小HH的代码风格)

在此先介绍下代码中的函数说明:

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

宏定义左儿子lson和右儿子rson,貌似用宏的速度要慢。

PushUp(rt):通过当前节点rt把值递归向上更新到根节点

PushDown(rt):通过当前节点rt递归向下去更新rt子节点的值

rt表示当前子树的根(root),也就是当前所在的结点

__int64 sum[N<<2],add[N<<2];
struct Node
{
    int l,r;
    int mid()
    {
        return (l+r)>>1;
    }
} tree[N<<2];
这里定义数据结构sum用来存储每个节点的子节点数值的总和,add用来记录该节点的每个数值应该加多少

tree[].l tree[].r分别表示某个节点的左右区间,这里的区间是闭区间

下面直接来介绍update函数,Lazy操作主要就是用在这里

void update(int c,int l,int r,int rt)//表示对区间[l,r]内的每个数均加c,rt是根节点
{
    if(tree[rt].l == l && r == tree[rt].r)
    {
        add[rt] += c;
        sum[rt] += (__int64)c * (r-l+1);
        return;
    }
    if(tree[rt].l == tree[rt].r) return;
    PushDown(rt,tree[rt].r - tree[rt].l + 1);
    int m = tree[rt].mid();
    if(r <= m) update(c,l,r,rt<<1);
    else if(l > m) update(c,l,r,rt<<1|1);
    else
    {
        update(c,l,m,rt<<1);
        update(c,m+1,r,rt<<1|1);
    }
    PushUp(rt);
}

if(tree[rt].l == l && r == tree[rt].r) 这里就是用到Lazy思想的关键时刻 正如上面说提到的,这里首先更新该节点的sum[rt]值,然后更新该节点具体每个数值应该加多少即add[rt]的值,注意此时整个函数就运行完了,直接return,而不是还继续向子节点继续更新,这里就是Lazy思想,暂时不更新子节点的值。

那么什么时候需要更新子节点的值呢?答案是在某部分update操作的时候需要用到那部分没有更新的节点的值的时候,这里可能有点绕口。这时就掉用PushDown()函数更新子节点的数值。

void PushDown(int rt,int m)
{
    if(add[rt])
    {
        add[rt<<1] += add[rt];
        add[rt<<1|1] += add[rt];
        sum[rt<<1] += add[rt] * (m - (m>>1));
        sum[rt<<1|1] += add[rt] * (m>>1);
        add[rt] = 0;//更新后需要还原
    }
}
PushDown就是从当前根节点rt向下更新每个子节点的值,这段代码读者可以自己好好理解,这也是Lazy的关键。

接着就是update操作的三个if语句了,这里我曾经一直不理解,多亏nyf队友的指点,借此感谢之。


下面再解释query函数,也就是用这个函数来求区间和

__int64 query(int l,int r,int rt)
{
    if(l == tree[rt].l && r == tree[rt].r)
    {
        return sum[rt];
    }
    PushDown(rt,tree[rt].r - tree[rt].l + 1);
    int m = tree[rt].mid();
    __int64 res = 0;
    if(r <= m) res += query(l,r,rt<<1);
    else if(l > m) res += query(l,r,rt<<1|1);
    else
    {
       res += query(l,m,rt<<1);
       res += query(m+1,r,rt<<1|1);
    }
    return res;
}

第一个if还是区间的判断和前面update的一样,到这里就可以知道答案了,所以就直接return。

接下来的查询就需要用到rt子节点的值了,由于我们用了Lazy操作,这段的数值还没有更新,因此我们需要调用PushDown函数去更新之,满足if(add[rt])就说明还没有更新。


到这里整个Lazy思想就算介绍结束了,可能我的语言组织不是很好,如果有不理解的地方可以给我留言,我再解释大家的疑惑。

PS:今天总算是对线段树入门了。

这里推荐一下,完全版线段树网址

下面贴出POJ3468完整的代码http://www.notonlysuccess.com/index.php/segment-tree-complete/,这里面有很飘逸的线段树代码,表示其update和query写的很巧妙,代码量也比较少,大家可以去学习。

#include <iostream>
#include <cstdio>
using namespace std;
const int N = 100005;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

__int64 sum[N<<2],add[N<<2];
struct Node
{
    int l,r;
    int mid()
    {
        return (l+r)>>1;
    }
} tree[N<<2];

void PushUp(int rt)
{
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}

void PushDown(int rt,int m)
{
    if(add[rt])
    {
        add[rt<<1] += add[rt];
        add[rt<<1|1] += add[rt];
        sum[rt<<1] += add[rt] * (m - (m>>1));
        sum[rt<<1|1] += add[rt] * (m>>1);
        add[rt] = 0;
    }
}

void build(int l,int r,int rt)
{
    tree[rt].l = l;
    tree[rt].r = r;
    add[rt] = 0;
    if(l == r)
    {
        scanf("%I64d",&sum[rt]);
        return ;
    }
    int m = tree[rt].mid();
    build(lson);
    build(rson);
    PushUp(rt);
}

void update(int c,int l,int r,int rt)
{
    if(tree[rt].l == l && r == tree[rt].r)
    {
        add[rt] += c;
        sum[rt] += (__int64)c * (r-l+1);
        return;
    }
    if(tree[rt].l == tree[rt].r) return;
    PushDown(rt,tree[rt].r - tree[rt].l + 1);
    int m = tree[rt].mid();
    if(r <= m) update(c,l,r,rt<<1);
    else if(l > m) update(c,l,r,rt<<1|1);
    else
    {
        update(c,l,m,rt<<1);
        update(c,m+1,r,rt<<1|1);
    }
    PushUp(rt);
}

__int64 query(int l,int r,int rt)
{
    if(l == tree[rt].l && r == tree[rt].r)
    {
        return sum[rt];
    }
    PushDown(rt,tree[rt].r - tree[rt].l + 1);
    int m = tree[rt].mid();
    __int64 res = 0;
    if(r <= m) res += query(l,r,rt<<1);
    else if(l > m) res += query(l,r,rt<<1|1);
    else
    {
       res += query(l,m,rt<<1);
       res += query(m+1,r,rt<<1|1);
    }
    return res;
}

int main()
{
    int n,m;
    while(~scanf("%d %d",&n,&m))
    {
        build(1,n,1);
        while(m--)
        {
            char ch[2];
            scanf("%s",ch);
            int a,b,c;
            if(ch[0] == 'Q')
            {
                scanf("%d %d", &a,&b);
                printf("%I64d\n",query(a,b,1));
            }

            else
            {
                scanf("%d %d %d",&a,&b,&c);
                update(c,a,b,1);
            }
        }
    }
    return 0;
}



  • 21
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
题目描述 给定一个长度为 $n$ 的序列 $a_1, a_2, \cdots, a_n$。 定义一个数 $k$ 的权值为 $w_k$,其中 $w_k$ 为 $k$ 的因数中 1 的个数。 定义一个区间 $[l,r]$ 的权值为 $\gcd\{a_l,a_{l+1},\cdots,a_r\}$ 的权值。 现在有 $m$ 次操作,每次操作为将区间 $[l,r]$ 内的数加上 $x$(即 $a_l\gets a_l+x,a_{l+1}\gets a_{l+1}+x,\cdots,a_r\gets a_r+x$)。 对于每次操作,求出操作后 $[1,n]$ 中有多少个区间的权值为素数。 输入格式 第一行包含两个整数 $n,m$。 第二行包含 $n$ 个整数 $a_1,a_2,\cdots,a_n$。 接下来 $m$ 行,每行包含三个整数 $l,r,x$,表示对区间 $[l,r]$ 内的数加上 $x$。 输出格式 对于每次操作,输出操作后 $[1,n]$ 中有多少个区间的权值为素数。 数据范围 $1\le n\le 10^5$, $1\le m\le 10^5$, $1\le a_i,x\le 10^6$ 输入样例: 5 3 1 2 3 4 5 1 5 1 2 3 2 1 3 1 输出样例: 3 4 3 解题思路 注意到一个数的因数中 1 的个数只与其质因数分解后的指数有关,可以预处理出每个质数的指数数组,即 primes[i] 表示第 $i$ 个质数的指数。 对于每个区间 $[l,r]$,求出其权值的质因数分解,即对于每个质数 $p$,求出区间 $[l,r]$ 内 $p$ 的最小指数 $k$,则该区间的权值为 $\prod_{i=1}^np^{k_i}$ 的权值。 然后我们可以把区间加操作看做将区间内所有数乘上 $x+1$,那么区间内每个质数的指数也都加上了 $1$,因此只需要实现一个支持区间乘的数据结构即可。 考虑使用线段维护区间乘积,对于每个节点,我们可以维护其子节点的质因数分解的指数数组,然后合并子节点时,将指数数组相应位置相加即可。 对于查询区间权值是否为素数,我们可以使用线性筛判定。 时间复杂度 每次操作的时间复杂度为 $O(\log n + k\log n)$,其中 $k$ 为质因数的个数,因此总时间复杂度为 $O(m\log n + kn\log n)$。 C++ 代码 ``` #include <iostream> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int N = 100010, M = 1000000; int n, m; int w[M + 10]; // w表示每个数的权值 int primes[N], cnt; // primes表示前cnt个质数 int id[M + 10]; // id[i]表示i这个数在primes数组中的位置 int st[N << 2][20]; // st表示线段节点中每个质数的指数 bool is_prime[M + 10]; // is_prime[i]表示i是否为质数 int res; // res表示答案 void get_primes(int n) { for (int i = 2; i <= n; i ++ ) { if (!is_prime[i]) primes[cnt ++ ] = i; for (int j = 0; primes[j] <= n / i; j ++ ) { is_prime[primes[j] * i] = true; if (i % primes[j] == 0) break; } } } void init() { for (int i = 2; i <= M; i ++ ) if (!is_prime[i]) { int t = i, cnt = 0; while (t <= M) w[t] ++, t *= i, cnt ++ ; } get_primes(N - 1); for (int i = 1; i <= cnt; i ++ ) id[primes[i]] = i; } void pushup(int u) { for (int i = 1; i <= cnt; i ++ ) st[u][i] = st[u << 1][i] + st[u << 1 | 1][i]; } void build(int u, int l, int r) { if (l == r) { st[u][id[w[l]]] = 1; return; } int mid = l + r >> 1; build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r); pushup(u); } void modify(int u, int l, int r, int ql, int qr, int c) { if (ql <= l && r <= qr) { for (int i = 1; i <= cnt; i ++ ) st[u][i] += c * st[u][i]; return; } int mid = l + r >> 1; if (ql <= mid) modify(u << 1, l, mid, ql, qr, c); if (qr > mid) modify(u << 1 | 1, mid + 1, r, ql, qr, c); pushup(u); } void query(int u, int l, int r, int k) { if (l == r) { bool is_prime = true; for (int i = 2; i <= sqrt(w[l]); i ++ ) if (w[l] % i == 0) { is_prime = false; break; } if (w[l] <= 1) is_prime = false; if (is_prime) res += st[u][k]; return; } int mid = l + r >> 1; query(u << 1, l, mid, k), query(u << 1 | 1, mid + 1, r, k); } int main() { init(); scanf("%d%d", &n, &m); build(1, 1, n); while (m -- ) { int l, r, x; scanf("%d%d%d", &l, &r, &x); modify(1, 1, n, l, r, x); res = 0; query(1, 1, n, x + 1); printf("%d\n", res); } return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值