埃氏筛法+快速幂+dp SRM 660 Div 2 Hard: Powerit

Powerit


Problem Statement

You are given three ints: nk, and m.

For each i between 1 and n, inclusive, Fox Ciel calculated the number i^(2^k - 1). ("^" denotes exponentiation.)

Return the sum of all numbers Fox Ciel calculated, modulo m.

Definition

  • ClassPowerit
  • Methodcalc
  • Parametersint , int , int
  • Returnsint
  • Method signatureint calc(int n, int k, int m)
(be sure your method is public)

Limits

  • Time limit (s)2.000
  • Memory limit (MB)256

Constraints

  • n will be between 1 and 1,000,000, inclusive.
  • k will be between 1 and 400, inclusive.
  • m will be between 2 and 1,000,000,000, inclusive.

Test cases

    • n4
    • k1
    • m107
    Returns 10
    • n4
    • k2
    • m107
    Returns 100
    We have  k=2 and therefore (2^ k - 1) = (2^2 - 1) = 3. Fox Ciel calculated the numbers 1^3, 2^3, 3^3, and 4^3. Their sum is 100, and 100 modulo 107 is 100.
    • n3
    • k3
    • m107
    Returns 69
    The actual sum of Ciel's numbers is 2316, and 2316 modulo 107 is 69.
    • n1
    • k400
    • m107
    Returns 1
    • n10
    • k2
    • m10
    Returns 5

题解

Problems that ask you to return the result modulo 1,000,000,007 (or in this case an argument  m ) usually do so to allow us to solve problems that have large results without actually using those large numbers in calculations. We can handle these numbers with modular arithmetic. Read  this recipe for more info.

This problem has two parts. First we need to know that each element of the sum can be calculated in  O(k)  time. We have a power of the form  i2k1 . If we use exponentiation by squaring, we can calculate a power in  O(log(x))  time where  x  is the exponent. This time the exponent is  O(2k)  , the base 2 logarithm of  2k  is  k . This means that if we use exponentiation by squaring we will need  O(k)  time. Because the specific exponent is a power of 2 minus 1, there are also other methods we can use. For example:  2k1=20+21+22+...2k1 . So we have:  i20+21+22+...2k1=(i20)(i21)(i22)...(i2k1) . Each  i2k  can be found by squaring  i2k1 . Ultimately, it doesn't matter if we use this method that is specific to this problem because it is still  O(k)

The second part of the problem is to realize that even with such an algorithm, we will need  O(nk)  time to find all  n  elements of the sum and add them together. For the constraints and the time limit that is too high, specially because of all the modulo operations we will need to do for each step.

If we want a faster solution we should try to look for a way to reuse the work spent in calculating the result for an  i  so that it can make the calculation for other elements easier. A nice way is to notice this: Imagine a number  a=bc a  is the product of two integers. The exponentiation for  a  is :  f(a)=a2k1 . Try this:

f(a)=a2k1  
f(a)=(bc)2k1  
f(a)=(b2k1)(c2k1)
f(a)=f(b)f(c)

Exponentiation is distributive between products. Since we have to calculate  f(i)  for all the numbers in a range, it is likely that when we are about to calculate  f(a)  we already know the values of  f(b)  and  f(c)  , so we can just reuse those results and avoid an  O(k)  calculation.

We just need to materialize that idea into a solution. For each  i  in the range we need to find two factors  pq  such that  i=pq . We should tell right away that there will be many numbers for which this is impossible: Prime numbers. If  i  is prime, we need to use the past method of calculating  f(i)  in  O(k)  time. There are 78498 prime numbers among the first 1000000 natural numbers. So in the worst case we will do the  O(k)  algorithm 78498 times. It is still much better than doing it 1000000 times.

Finally, in case  i  is composite, we need to quickly find two factors  pq=i . We can just do all of this as we test if  i  is prime, just use the successive divisions, if we don't find a divisor  p  (and therefore  q=ip  is also a divisor so we have our pair of factors), then the number is prime. We can do better and use a Sieve of Eratosthenes, just with a small modification, when you find a prime number  p  , don't just strike down its multiples as composite numbers, also save  p  as a "first factor" of each of the composite numbers. Then we can use the look up for the first factor to find a divisor.

long get_ith_element(int i, int k, int m)
{
    // calculate i ^ (2^k - 1) in O(k) time:
    long p = i;
    long q = p;
    for (int j = 1; j < k; j++) {
        q = (q * q) % m;
        p = (p * q) % m;
    }
    return p;
}
 
int calc(int n, int k, int m)
{
    // modified Sieve of Erathostenes, when the number is composite, 
    // first_factor[i] will return a prime number that divides it.
    vector<int> first_factor(n + 1, 1);
    for (int i = 2; i <= n; i++) {
        if (first_factor[i] == 1) {
            // prime
            first_factor[i] = i;
            for (int j = i+i; j <= n; j += i) {
                first_factor[j] = i;
            }
        }
    }
     
    // f(p*q) = f(p) * f(q) , because f(i) = i ^ (something)
    vector<long> dp(n + 1, 1LL );
    long sum = 0;
    for (int i = 1; i <= n; i++) {
        if (first_factor[i] == i) {
            dp[i] = get_ith_element(i,k,m);
        } else {
            dp[i] = (dp[first_factor[i]] * dp[i / first_factor[i]]) % m;
        }
        sum += dp[i];
    }
    return (int)(sum % m);
}


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值