TBB使用教程

官方tutorial https://software.intel.com/en-us/tbb-user-guide1.parallel_for:常规方式(非lambda函数):1.1串行版本:void SerialApplyFoo( float a[], size_t n ) { for...

2017-03-15 15:09:33

阅读数 2195

评论数 0

C/C++中函数调用规则(约定)__cdecl __stdcall __thiscall __vectorcall __fastcall __clrcall

转自https://my.oschina.net/ray1421/blog/699540 相关文献 __stdcall https://msdn.microsoft.com/en-us/library/zxk0tw93.aspx C语言函数可变参数详解 - ranpanf的专栏 -...

2017-02-06 10:54:20

阅读数 2223

评论数 0

数据分析框架Pandas进阶

广播运算多维数据和一维数据进行运算称为广播,会自动按标签匹配对每个元素执行运算。In [13]: frm Out[13]: 0 1 2 a 0 1 2 b 3 4 5 c 6 7 8 In [16]: sr2 = Series([3,2,4],index = range...

2016-05-12 10:54:40

阅读数 1352

评论数 0

数据分析框架Pandas入门

数据结构:SeriesSeries是一种类似一维数组的数据结构,输出时会同时显示索引和值In [6]: a = Series([3,5,2]) In [7]: a Out[7]: 0 3 1 5 2 2 dtype: int64分别得到索引和值In [10]: a.values ...

2016-05-09 23:11:21

阅读数 1597

评论数 0

Github入门教程

0.安装mac和Linux默认预装git windows:https://git-for-windows.github.io/ 安装过程中仔细阅读安装流程,普通用户选择默认选项即可。1.初始设置输入命令: git config --global user.email "you@ex...

2016-04-07 21:38:38

阅读数 467

评论数 0

Stanford 机器学习笔记 Week11 Application Example: Photo OCR

Photo OCRProblem Description and PipelineOCR: Optical Character Recognition 步骤: 1.识别包含文字的图片区域 2.将每块图片中的各个文字分隔开 3.对每个文字进行识别这种算法流程被称为pipeline,前一个模...

2016-04-07 19:54:46

阅读数 1116

评论数 0

Stanford 机器学习笔记 Week10 Large Scale Machine Learning

Gradient Descent with Large DatasetsLearning With Large Datasets在处理海量数据时对算法会有更高的要求。比如在计算偏导数时,当m很大时对m个元素求和的开销会很大。因此在将算法应用于海量数据时最好先确定算法没有high-bias,方法就是...

2016-03-30 14:46:58

阅读数 1155

评论数 0

Stanford 机器学习笔记 Week9 Recommender Systems

Predicting Movie RatingsProblem Formulation推荐系统举例: 根据各个用户的打分记录,预测某用户对一没看过的电影的打分情况。Content Based Recommendations解决上一节问题的一个方法: 对于每个电影抽象出2个属性,romanc...

2016-03-26 23:35:33

阅读数 1345

评论数 0

为什么logistic regression要使用sigmoid函数

转自:JUN’S TECH BLOG http://leijun00.github.io/2014/08/logistic-regression/我们知道,线性回归模型输出的是一个连续值,如果我们要输出的不是连续值,该怎么做呢?假设我们的输出只有 1 和 -1. 逻辑回归模型形式上是把线性回归...

2016-03-23 16:58:27

阅读数 6802

评论数 0

Stanford 机器学习笔记 Week9 Anomaly Detection

Density EstimationProblem Motivation这个算法的目的是发现一个training set中的不规则点。给定一个training set ,如果我们能设计一个模型p,使得p(test) 等于该点是常规点的概率。那么我们就能通过判断p(test)< ε 来确定te...

2016-03-22 16:42:49

阅读数 1200

评论数 0

Stanford 机器学习 Week8 作业:K-means Clustering and Principal Component Analysis

FindClosestCentroidsfor i = 1:size(X,1) dis = sum((centroids - X(i,:)) .^ 2, 2); [t, idx(i)] = min(dis); endComputeCentroidsfor i = 1:K i...

2016-03-20 23:22:41

阅读数 1308

评论数 0

Stanford 机器学习笔记 Week8 Dimensionality Reduction

MotivationMotivation I: Data Compression降维可以做数据压缩,减少冗余信息从而减小存储空间。2D向1D降维: cm 和 inches都表示长度,属于冗余信息,可以用z向量做新的维度,用1维就可以表示长度。3D向2D降维: 在左侧的原始数据中,所有点...

2016-03-19 23:16:33

阅读数 808

评论数 0

Stanford 机器学习笔记 Week8 Unsupervised Learning

ClusteringK-Means Algorithm一种经典的聚类算法,步骤很简单,分4步:1.首先随机选择K个聚类中心 2.对于Training Set中的每个点i,计算离i最近的中心c(i),将该点标记为c(i) 3.对于每个中心k,重新计算该位置为:所有标记为k的点的平均位置 4.如...

2016-03-19 21:12:03

阅读数 931

评论数 0

Stanford 机器学习笔记 Week7 Support Vector Machines

Large Margin ClassificationOptimization Objective在logistic回归中,cost function使用了sigmoid函数,从而将θTx的值映射到(0 , 1)范围内。 在SVM中提出了另一种函数cost来替代sigmoid函数,如图: 上图中...

2016-03-11 10:19:59

阅读数 748

评论数 0

Stanford 机器学习笔记 Week6 Machine Learning System Design

Building a Spam ClassifierPrioritizing What to Work On本节将会设计一个垃圾邮件分类器,具体方法是这样的:首先设定一些经常在垃圾邮件中出现的单词,比如buy, discount, deal等等,假如有m个。然后对于一封邮件,用一个长度为m的0/1...

2016-03-05 14:36:24

阅读数 1473

评论数 0

Stanford 机器学习 Week6 作业:Regularized Linear Regression and Bias v.s. Variance

linearRegCostfunctionm = length(y); J = 0; grad = zeros(size(theta));J = 1.0 / 2 / m * ( sum( (X * theta - y) .^ 2) + lambda * sum(theta(2:end) .^2)...

2016-03-04 12:28:16

阅读数 1221

评论数 0

埃氏筛法和欧拉筛法的区别

转自: 点击打开链接 Eratosthenes筛法(Sieve of Eratosthenes) 由于思想非常简单,故只给出实现。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 v...

2016-03-03 14:56:19

阅读数 6988

评论数 2

Stanford 机器学习笔记 Week6 Advice for Applying Machine Learning

Evaluating a Learning AlgorithmDeciding What to Try Next当算法效果不好时,你可能会尝试:1. 收集更多数据 2. 增加属性 3.减少属性 4.修改regularition参数lambda,下面几节会告诉你如何选择正确的做法。Evaluatin...

2016-03-02 21:14:40

阅读数 980

评论数 0

Stanford 机器学习 Week5 作业: Neural Networks: Learning

randInitializeWeightepsilon_init = 0.12; W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;sigmoidGradientg = sigmoid(z) .* (1 - sigmoid(z)...

2016-02-29 16:11:52

阅读数 1179

评论数 0

Stanford 机器学习笔记 Week5 Neural Networks: Learning

Cost Function and BackpropagationCost Function在求取神经网络权重矩阵时,第一步也是要先写出cost function。它的cost function就是带rugularization 的logistic regression的加强版,因为在多种类分类中...

2016-02-25 11:24:17

阅读数 1325

评论数 0

提示
确定要删除当前文章?
取消 删除