原题读起来感觉有一点绕,不过题意很简单:其实就是计算机要重复地做一些相同的任务,每个任务需要一定时间,在这段时间内可能会用到不同的处理器(共有5个处理器)。一个处理器在使用的时候会锁住,其他的任务就不能访问了。只能等到下一个clock cycle再使用这个处理器。
任务使用处理器的pattern就是input,比如
7
X...XX.
.X.....
..X....
...X...
......X
就代表每个任务耗时7个cycle,X表示在这一个cycle内这个处理器会被使用。
问题是:现在有10个这样的任务,如何安排他们使得计算机在最短时间内处理完所有任务。每个任务耗时小于20个cycle。输出最短的时间。
理解了题意之后,可以大概得出一个解法,想法并不难(但是要AC还是有点难度。。):
回溯法dfs,模拟八皇后问题,每次尝试在下一个位置“放置”一个任务,看看会不会和之前的任务有冲突。
但是这道题的难点是,需要得出所有可能的结果,最后选出一个最小的。但是可能的结果是无穷多的(因为只要不冲突,可以往后面的任意位置摆放),一点点分析可以得出答案应小于200(即任务之间完全没有重叠)。但是解答树的节点还是太多了,如果不剪枝,最坏情况下结点数的规模大概是20^10(每个任务最多有20种摆放的位置,共有10个任务),会TLE
剪枝的质量会非常显著的影响程序的效率。另外,剪枝的时候要小心,不要错剪,一定要进行证明,说服自己。
1、最重要的剪枝:从当前结点开始,每次都走最小步数(最小步数就是摆放第二个任务时可以走得最小步数,(Rujia: 想一想,为什么?))如果这样到最后的结果还要大于目前的最优解,则剪枝。剪枝的式子一定要算准确,剪少了跑的慢或者TLE,剪多了WA(而且往往是大部分答案正确,小部分答案错误,导致很难察觉)
没有这个剪枝,程序几乎是完全没法跑
2、第二重要的剪枝:预判一下20个摆放位置的可能性。在尝试摆放的时候,20个位置中,并不是每个位置都可以,有一些位置是不管在什么情况下都不能摆放的-即第二个任务不能摆放的位置。将这些位置剔除,保留下有可能性的位置,程序性能可以提高几倍(在我的测试中是5倍)。这个优化很像Morning after Halloween中,邻接图转为邻接表的优化。
3、一个重要的优化:借鉴了BearChild大神的思路:http://blog.csdn.net/keshuai19940722/article/details/23206963
我一开始用了一个大vis数组来判断冲突,这个数组需要开到5*200。所以没法使用二进制表达。但是BearChild大神很巧妙的避免了这个大vis,转而在每一次尝试摆放一个任务的时候,做一个小的vis,其中存放了只会对当前任务的摆放产生影响的点。规模就变成了5*20,从而可以使用5个int作二进制表达而增加效率。这里还可以训练一下二进制操作,是个不错的练习
通过最近暴力法的练习,很强烈的感受到剪枝的重要性和技巧性。剪枝往往直接决定着程序能不能跑起来、能不能得出正确答案
Run Time: 0.235s
#define UVa "7-5.690.cpp"
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
using namespace std;
//Global Variables. Reset upon Each Case!
int n;
int reserve[5];
int ans;
vector<int> available_steps;
/
int judge(int* vis, int offset) {
for(int i = 0; i < 5; i ++) if(reserve[i]&(vis[i]>>offset)) return 0;
return 1;
}
int init() {
ans = 200;
available_steps.clear();
memset(reserve, 0, sizeof(reserve));
char ch;
for(int i = 0; i < 5; i ++) {
for(int j = 0; j < n; j ++) {
do{scanf("%c", &ch);}while(!isprint(ch));
if(ch == 'X') reserve[i] |= (1<<j);
}
}
for(int i = 1; i <= n; i ++) {
if(judge(reserve, i)) {
available_steps.push_back(i);
}
}
}
int dfs(int taskd, int start, int* window) {
if(taskd == 9) {
if(start + n < ans) ans = start + n;
}
else {
for(int i = 0; i < available_steps.size(); i ++) {
if(start + available_steps[i] + (9-taskd-1)*available_steps[0] + n > ans) return 0; //key pruning.
if(judge(window, available_steps[i])) {
int tmp[5];
memcpy(tmp, window, sizeof(tmp));
for(int j = 0; j < 5; j ++) tmp[j] = (tmp[j]>>(available_steps[i])) | reserve[j];
dfs(taskd + 1, start + available_steps[i], tmp);
}
}
}
}
int main() {
while(scanf("%d", &n) != EOF && n) {
init();
dfs(0, 0, reserve);
printf("%d\n", ans);
}
return 0;
}