康托展开及其逆运算

原创 2015年07月07日 11:17:45

      展开式 

      X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0<=ai

       

        {1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。

  代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。

  他们间的对应关系可由康托展开来找到。

  如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :

  第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数                只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!+1*0!就是康托展开。

  再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一                位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,               1324是第三个大数。

                 

                  逆运算

                 

     例1 {1,2,3,4,5}的全排列,并且已经从小到大排序完毕

  (1)找出第96个数

  首先用96-1得到95

  用95去除4! 得到3余23

  用23去除3! 得到3余5

  用5去除2!得到2余1

  用1去除1!得到1余0有3个数比它小的数是4

  所以第一位是4

  有3个数比它小的数是4但4已经在之前出现过了所以是5(因为4在之前出现过了所以实际比5小的数是3个)

  有2个数比它小的数是3

  有1个数比它小的数是2

  最后一个数只能是1

  所以这个数是45321

  (2)找出第16个数

  首先用16-1得到15

  用15去除4!得到0余15

  用15去除3!得到2余3

  用3去除2!得到1余1

  用1去除1!得到1余0

  有0个数比它小的数是1

  有2个数比它小的数是3 但由于1已经在之前出现过了所以是4(因为1在之前出现过了所以实际比4小的数是2)

  有1个数比它小的数是2 但由于1已经在之前出现过了所以是3(因为1在之前出现过了所以实际比3小的数是1)

  有1个数比它小得数是2 但由于1,3,4已经在之前出现过了所以是5(因为1,3,4在之前出现过了所以实际比5小的数是1)

  最后一个数只能是2

  所以这个数是14352


                


 推荐地址      http://blog.csdn.net/emailyoyo/article/details/40824377

 推荐地址     http://www.doc88.com/p-293361248346.html

版权声明:本文为博主原创文章,未经博主允许不得转载。

康托展开及其逆运算

康托展开的wiki介绍
  • wdjhzw
  • wdjhzw
  • 2014年10月03日 11:49
  • 702

康托展开及其逆运算 详解

康托展开 康托展开逆运算 详解
  • lx417147512
  • lx417147512
  • 2014年04月30日 16:52
  • 4995

康托和逆康托展开

1.康托展开的解释 康托展开就是一种特殊的哈希函数   把一个整数X展开成如下形式:   X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[...
  • u013008291
  • u013008291
  • 2014年02月16日 12:04
  • 406

康托展开及其逆运算【cantor】

把一个整数X展开成如下形式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0! 其中,a为整数,并且0...
  • u011394362
  • u011394362
  • 2014年04月10日 11:01
  • 1004

康托展开 及其逆运算

转自morgan_xww :http://blog.csdn.net/morgan_xww/article/details/6275460 康托展开: X=an*(n-1)!+...
  • zone_programming
  • zone_programming
  • 2012年02月08日 14:40
  • 2543

康托展开与康托展开的逆运算

康托展开用来求数组是该全排列的第几项,康托展开的逆运用用于求全排列的第几个排列。 已知对于1-n个数的全排列,总共的可能是n!种。对于一个已知的数列比如45321,在第一项是4时,表示第一项在此之前...
  • HazelNuto
  • HazelNuto
  • 2017年11月10日 16:37
  • 57

康托展开和康托展开的逆运算

八数码问题不用康托展开判断重复8s,用康托展开判断重复30MS。康托展开最大最明显的作用就是在判断状态是否重复方面了,其实属于hash的一个技巧。   一、康托展开 【问题背景】对于一个有n个不同元素...
  • jie1991liu
  • jie1991liu
  • 2012年11月09日 16:12
  • 762

康托展开及逆运算

改编自http://blog.csdn.net/zhongkeli/article/details/6966805 康托展开(一般用于hash)   康托展开的公式是 X=an*(n-1)!+an-...
  • fzh90
  • fzh90
  • 2013年07月17日 10:32
  • 472

康托展开与其逆运算

X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0 康托展开的应用实例: {1,2,3,4,...,n}...
  • u013501457
  • u013501457
  • 2014年06月08日 08:34
  • 554

浅谈康托展开与其逆运算

康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩。 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的。公式X=an∗(n−1)!+an−1∗(n−2)!+.....
  • wang2332
  • wang2332
  • 2018年01月26日 18:42
  • 38
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:康托展开及其逆运算
举报原因:
原因补充:

(最多只允许输入30个字)