康托展开及其逆运算

原创 2015年07月07日 11:17:45

      展开式 

      X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0<=ai

       

        {1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。

  代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。

  他们间的对应关系可由康托展开来找到。

  如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :

  第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数                只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!+1*0!就是康托展开。

  再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一                位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,               1324是第三个大数。

                 

                  逆运算

                 

     例1 {1,2,3,4,5}的全排列,并且已经从小到大排序完毕

  (1)找出第96个数

  首先用96-1得到95

  用95去除4! 得到3余23

  用23去除3! 得到3余5

  用5去除2!得到2余1

  用1去除1!得到1余0有3个数比它小的数是4

  所以第一位是4

  有3个数比它小的数是4但4已经在之前出现过了所以是5(因为4在之前出现过了所以实际比5小的数是3个)

  有2个数比它小的数是3

  有1个数比它小的数是2

  最后一个数只能是1

  所以这个数是45321

  (2)找出第16个数

  首先用16-1得到15

  用15去除4!得到0余15

  用15去除3!得到2余3

  用3去除2!得到1余1

  用1去除1!得到1余0

  有0个数比它小的数是1

  有2个数比它小的数是3 但由于1已经在之前出现过了所以是4(因为1在之前出现过了所以实际比4小的数是2)

  有1个数比它小的数是2 但由于1已经在之前出现过了所以是3(因为1在之前出现过了所以实际比3小的数是1)

  有1个数比它小得数是2 但由于1,3,4已经在之前出现过了所以是5(因为1,3,4在之前出现过了所以实际比5小的数是1)

  最后一个数只能是2

  所以这个数是14352


                


 推荐地址      http://blog.csdn.net/emailyoyo/article/details/40824377

 推荐地址     http://www.doc88.com/p-293361248346.html

版权声明:本文为博主原创文章,未经博主允许不得转载。

康托展开及其逆运算 详解

康托展开及其逆运算 详解 详细看这里   点击打开链接 康托展开是什么? 定义: X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2...

全排列的编码与解码——【康托展开及其逆运算】

参考过程:点击打开链接 参考代码:点击打开链接 康托展开表示的是当前排列在n个不同元素的全排列中的名次。比如213在这3个数所有排列中排第3。   那么,对于n个数的排列,康托展开为: ...

康托展开及其逆运算 详解

康托展开 康托展开逆运算 详解

康托展开与其逆运算

X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0 康托展开的应用实例: {1,2,3,4,...,n}...

康托展开及其逆运算【cantor】

把一个整数X展开成如下形式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0! 其中,a为整数,并且0...

康托展开与康托展开的逆运算

康托展开用来求数组是该全排列的第几项,康托展开的逆运用用于求全排列的第几个排列。 已知对于1-n个数的全排列,总共的可能是n!种。对于一个已知的数列比如45321,在第一项是4时,表示第一项在此之前...

康托逆运算

例1 {1,2,3,4,5}的全排列,并且已经从小到大排序完毕 (1)找出第96个数 首先用96-1得到95 用95去除4! 得到3余23 有3个数比它小的数是4 所以第一位是4 用23去...

蓝桥杯 历届试题 九宫重排 经典八数码问题 A*算法+康托展开

问题描述   如下面第一个图的九宫格中,放着 1~8 的数字卡片,还有一个格子空着。与空格子相邻的格子中的卡片可以移动到空格中。经过若干次移动,可以形成第二个图所示的局面。   我们把第一个图的局面...

POJ1077&HDU1043 Eight 八数码第八境界 IDA* hash 康托展开 奇偶剪枝

Description The 15-puzzle has been around for over 100 years; even if you don't know it by that...

UVA 11525 Permutation-不重复全排列的第n项-(康托展开)

康托展开的公式 :  X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! ai为整数,并且0 适用范围:没有重复元素的全排列 ...
  • viphong
  • viphong
  • 2016年08月18日 21:49
  • 180
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:康托展开及其逆运算
举报原因:
原因补充:

(最多只允许输入30个字)