关闭

HEVC中的帧内预测

HEVC的帧内预测标准与其背后的原理...
阅读(445) 评论(0)

使用POSIX Threads进行多线程编程(三) ——条件变量

精致同步——条件变量 如前所说的互斥量,他们允许简单的同步——对资源的互斥访问。然而,我们经常会需要在线程间作真正的同步: 在一个服务器,一个线程读取用户的请求,并调度几个线程来处理。在有数据需要处理的时候,这些线程需要被告知,不然的话他们就应该处于等待状态(不消耗CPU资源); 在一个GUI(Graphical User Interface,图形用户接口)应用中,一个线程读取用户输入,一个...
阅读(273) 评论(0)

使用POSIX Threads进行多线程编程(二) ——使用互斥量同步线程

使用互斥量同步线程 当在同一个内存空间跑几个线程时的一个基本问题就是保证它们不会同时操作同一内存(step on each other's toes).这一点,我们指的是使用两个不同线程的数据结构问题。 例如,考虑这样一个例子:两个线程尝试更新两个变量。一个线程将两个值都设为0,另一个线程将两个值都设为1。如果两个线程同时想要访问这两个数据,我们可能会得到一个0一个1.这是因为在一个线程将第一...
阅读(232) 评论(0)

使用POSIX Threads进行多线程编程(一)——pthread基本知识

使用POSIX Threads进行多线程编程——pthread基本知识说明: 本文是翻译自《MultiThreaded-Programming-With-POSIX》,作者Guy Kerens。本文预计翻译三章,主要涉及多线程基本知识、互斥量(锁)和条件变量,一是因为这已经能够引导读者入门,二是因为本人时间工作之余翻译,实在时间捉急。 翻译:张小川,转载请保留原作者 写在开始这份综述是为了使你熟悉使...
阅读(492) 评论(0)

C语言中位操作符(1)-计算机中的整数表示方法

写在前面 长久以来,位操作符一直困扰着我,为什么呢?因为其虽易用,但是却有隐患? 计算机中中数字的表示方法 我们都知道在计算机中,数是以补码表示的,为什么呢? 先看定义: 正数的原码、反码、补码是其本身; 负数的原码是其本身,反码是除了符号位以外按位取反,补码则是反码加1; 举例说明: uint8_t x = 0x08;//uint8_t即是无符号8位数,也就是跟char相同...
阅读(625) 评论(0)

H.264/MPEG-4 Part 10 White Paper 翻译(1)--概述

H.264综述   1.    引言 数字电视和DVD-video的出现使得广播电视和家庭娱乐发生了彻底的变革.随着视频压缩技术的标准化,越来越多的这些应用成为可能.MPGE系列的下一个标准,MPEG4,正使得新一代的基于因特网的视频应用成为可能.而现在视频压缩的ITU-T H.263标准被广泛的应用于视频会议系统.   MPEG4(视频)和H.263都是基于视频压缩(视频编码)技术...
阅读(856) 评论(0)

写在2014的结束与2015的开始

写在2014的结束与2015的开始 正在看湖南卫视的跨年演唱会,其中插播了我是歌手的广告,词是这样的,2015从什么开始,从狂欢在一起开始。本身不是湖南卫视的脑残粉,偶尔看看,这个广告词不错,那么我再发展一下:2014以什么结束,2015从什么开始?? 过去的已经结束,但是,过去的如果不能总结,那么未来只能一遍遍地重复过去。那么就在这里总结一下我的2014吧。 在年初时开始与父母商量想要出国...
阅读(659) 评论(3)

MIT算法导论第七讲学习笔记-哈希表(Hashing)

哈希表,又称散列表,其定义是根据一个哈希函数将集合S中的关键字映射到一个表中,这个表就称为哈希表,而这种方法就称为Hashing。 我们先来一个直观的理解:如果一个集合S中的关键字,并且关键字各不相同,那么我们按如下公式建立一个Array T[0,1…m-1]:...
阅读(2026) 评论(2)

Strassen矩阵乘法(分治法续)

矩阵乘法 -1矩阵乘法的定义...
阅读(3666) 评论(0)

理解递归

理解递归首先要理解C语言在内存中的组织形式。 基本上,一个可执行程序由四个区域组成:代码段,静态数据区,栈和堆。...
阅读(626) 评论(1)

MIT算法导论学习-Lecture6 顺序统计问题(Order Statistics)

第六讲顺序统计问题(Order Statistics) 问题描述:给定n个无序元素,找出其中第i-th小的数. 一个最基本的方法:先排序,然后返回第i个元素,这种方法在使用merge Sort的情况下,时间复杂度为Theta(nlgn). 当i=1,或者i=n时,我们可以通过遍历n个元素来得到最小值(i=1)或最大值(i=n)元素,这时其时间复杂度为Theta(n);而更一般的情况下,比如i...
阅读(2296) 评论(0)

CUDA 6.0在 VS 2010下的安装和配置

CUDA 6.0在 VS 2010下的安装和配置...
阅读(8766) 评论(0)

MIT算法导论学习-Lecture5 排序

第五讲 排序 How fast can we Sort?...
阅读(620) 评论(0)

MIT算法导论学习笔记-Lecture4 分治法(续)

第四讲:分治法(续) 4.1 快速排序(Quicksort)...
阅读(743) 评论(0)

MIT算法导论学习笔记-Lecture3:分治法

第三讲 分治法(Devide and Conquer)...
阅读(1723) 评论(1)
20条 共2页1 2 下一页 尾页
    个人资料
    • 访问:28495次
    • 积分:493
    • 等级:
    • 排名:千里之外
    • 原创:16篇
    • 转载:0篇
    • 译文:4篇
    • 评论:7条
    文章分类
    最新评论