JZOJ3221. 【HNOI2013】游走

题目大意

n 个节点和m条边的无向简单连通图。
初始时在1 号顶点,每一步以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当到达N 号顶点时游走结束,总分为所有获得的分数之和。
现在对这M 条边进行编号,使得小获得的总分的期望值最小。

题解

直接求每条边的期望不是很容易,我们可以转化模型,求到达每个点的期望,设为 f(x)
f(x)=y,(x,y)Ef(y)1P
然后直接高斯消元即可求出 f ,接着直接按照f大小将边从大到小排序,然后乘上编号即可。

SRC

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std ;

#define N 500 + 10
#define M 300000 + 10
const double eps = 1e-7 ;
struct Edgetype {
    int a , b ;
    double sum ;
} E[M] ;

int Node[M] , Next[M] , Head[N] , C[N] , tot ;
double A[N][N] , f[N] ;
double ans ;
int n , m ;

bool cmp( Edgetype a , Edgetype b ) { return a.sum > b.sum ; }

void link( int u , int v ) {
    Node[++tot] = v ;
    Next[tot] = Head[u] ;
    Head[u] = tot ;
}

void Gauss() {
    for (int i = 1 ; i <= n ; i ++ ) {
        bool bz = 0 ;
        if ( fabs(A[i][i]) > eps ) bz = 1 ;
        for (int j = 1 ; j <= n && !bz ; j ++ ) {
            if ( fabs(A[j][i]) > eps ) {
                swap( A[i] , A[j] ) ;
                bz = 1 ;
            }
        }
        if ( !bz ) continue ;
        double c = A[i][i] ;
        for (int j = 1 ; j <= n + 1 ; j ++ ) A[i][j] /= c ;
        for (int j = 1 ; j <= n ; j ++ ) {
            if ( i == j ) continue ;
            c = A[j][i] ;
            for (int k = 1 ; k <= n + 1 ; k ++ ) A[j][k] -= A[i][k] * c ;
        }
    }
}

int main() {
    scanf( "%d%d" , &n , &m ) ;
    for (int i = 1 ; i <= m ; i ++ ) {
        int u , v ;
        scanf( "%d%d" , &u , &v ) ;
        link( u , v ) ;
        link( v , u ) ;
        C[u] ++ , C[v] ++ ;
        E[i].a = u , E[i].b = v ;
    }
    for (int i = 1 ; i <= n ; i ++ ) {
        A[i][i] = -1 ;
        if ( i == n ) break ;
        for (int p = Head[i] ; p ; p = Next[p] ) A[i][Node[p]] = (double) 1 / C[Node[p]] ;
    }
    A[1][n+1] = -1 ;
    Gauss() ;
    for (int i = 1 ; i <= m ; i ++ ) E[i].sum = A[E[i].a][n+1] / C[E[i].a] + A[E[i].b][n+1] / C[E[i].b] ;
    sort( E + 1 , E + m + 1 , cmp ) ;
    for (int i = 1 ; i <= m ; i ++ ) ans += (double) i * E[i].sum ;
    printf( "%.3lf\n" , ans ) ;
    return 0 ;
}

以上.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值