[动态规划-2] 最长公共子序列-Longest Common Subsequence

问题描述:给定两个字符串,求两个数组的最长公共自序列,LCS。

“ABCDGH” 和 “AEDFHR”的最长公共子序列是 “ADH” ,长度为3;

 “AGGTAB” 和 “GXTXAYB”的最长公共子序列是 “GTAB” ,长度为4.


问题分析:

假设两个字符串分别为A[m],B[n],则我们用L[i,j]来表示子序列A[0]--A[i]和子序列B[0]--B[j]的最长公共子序列的长度。

则:

L[i,j] = L[i-1,j-1] + 1,当A[i] = A[j]时;

L[i,j] = Max{ L[i-1,j], L[i,j-1] },当A[i] \= A[j]时;


画图分析:



代码:

#include<stdio.h>
#include<stdlib.h>
  
int max(int a, int b);
  
/* 返回最长公共子序列长度 */
int lcs( char *X, char *Y, int m, int n )
{
   int L[m+1][n+1];
   int i, j;
  
   /* 自下向上建立L[i,j]数组 */
   for (i=0; i<=m; i++)
   {
     for (j=0; j<=n; j++)
     {
       if (i == 0 || j == 0)
         L[i][j] = 0;//边界条件初始化,由于第0个已经用于边界初始化了
                     //所以L[i][j]的表示的是A[0--i-1],B[0--j-1]的LCS了
  
       else if (X[i-1] == Y[j-1])
         L[i][j] = L[i-1][j-1] + 1;
  
       else
         L[i][j] = max(L[i-1][j], L[i][j-1]);
     }
   }
   
   return L[m][n];
}
  
int max(int a, int b)
{
    return (a > b)? a : b;
}


最长公共子序列问题(Longest Common Subsequence,简称LCS)是指在两个序列中找到一个最长的公共子序列,其中一个序列的所有元素按原序列中出现的顺序排列,而另一个序列中的元素则不要求按原序列中出现的顺序排列。 动态规划方法可以很好地解决LCS问题。设A和B是两个序列,LCS(A,B)表示A和B的最长公共子序列。则可以设计如下的状态转移方程: 当A和B的末尾元素相同时,LCS(A,B) = LCS(A-1,B-1) + 1。 当A和B的末尾元素不同时,LCS(A,B) = max(LCS(A-1,B), LCS(A,B-1))。 其中,LCS(A-1,B-1)表示A和B的末尾元素相同时的情况,LCS(A-1,B)表示A的最后一个元素不在最长公共子序列中,而B中的最后一个元素在最长公共子序列中的情况,LCS(A,B-1)表示B的最后一个元素不在最长公共子序列中,而A中的最后一个元素在最长公共子序列中的情况。 根据这个状态转移方程,可以使用动态规划算法来求解LCS问题。具体方法是,构建一个二维数组dp,其中dp[i][j]表示A前i个元素和B前j个元素的LCS。初始化dp[0][j]和dp[i][0]为0,然后按照上述状态转移方程进行递推,最终得到dp[lenA][lenB],其中lenA和lenB分别表示A和B的长度。dp[lenA][lenB]即为A和B的最长公共子序列的长度。要找到具体的最长公共子序列,可以从dp[lenA][lenB]开始,按照状态转移方程反向推导出每个元素,即可得到最长公共子序列LCS问题是动态规划算法的经典应用之一,时间复杂度为O(n*m),其中n和m分别为A和B的长度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值