白话空间统计二十一:密度分析(五)带宽与核表面曲率的关系

本文详细解释了空间统计中的密度分析之带宽概念,通过直观的图像和三维渲染展示带宽如何影响核密度分析的结果,并探讨了不同带宽设置下曲面的变化特性。
白话空间统计二十一:密度分析(五)

上次讲密度分析的时候,有同学问道带宽的问题,实际上我翻 了一下以前写的文章,在密度分析一、二里面,都对这个有过描述,详细的可以回去翻一下(很老的文章了……可能要翻到年初),这里通过一张图片做一个简单的回顾:


所谓的窗口宽度(带宽,bindwidth,搜索半径,都是一个概念),其实指的就是这个这个核表面的钟型区域的底面半径,这个半径里面能够被包括多个点,就把点的数量(在不进行属性加权的情况下,就对点进行简单的计数,即有个点,就记1),带入到公式中进行计算,如下图:



从上图和公式都可以看出,底面积越大,可能包括进来的点就越多……但是相应的,在曲面面积不变的情况,底面积越大,自然高度H值就越小:


当然,也有可能扩大之后,可能被包括进来的猫会更多,但是只要被包括近来的猫增长率不超过带宽的平方,那么H就是一定会造成下降的。总体来说,带宽越大,面积不变的情况下,核高度越低,曲面越平滑。

因为上次几张图都是用的二维表面渲染的,对这种变化看不出来,我们下面看看在三维中,对三个不同带宽的渲染。



可以看见,随着带宽的增大,曲面的曲率越来越平缓。那么可以得到下面的结论:
1、带宽越小,表面的曲率越大,越能突出不同区域之间的变化,揭露更多的细节情况。
2、带宽越大,表面曲率越小,生成的结果越平滑,结果更加抽象。



下一节我们将讲讲如何使用R语言来做核密度分析。

待续未完。


评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾神说D

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值