POJ 3107 Godfather (求树的重心)

本文介绍了一种利用树的重心概念解决特定问题的方法,并通过一个实际的编程实例展示了如何求解树的重心,包括关键的数据结构定义、递归求解子树大小及重心的具体算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看到这题我很惊讶,求删掉某点后子树节点最多的最小。这不就是求树的重心吗?而求重心在之前的POJ 1741已经做过了(而且在里面只是一小步)。直接把代码复制一下。。。

具体代码里面也注释了。

有一个trick点,别忘了重心要排序后输出,因此wa了一次

【代码】

/* ***********************************************
Author        :angon

************************************************ */
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define showtime fprintf(stderr,"time = %.15f\n",clock() / (double)CLOCKS_PER_SEC)
#define lld %I64d
#define REP(i,k,n) for(int i=k;i<n;i++)
#define REPP(i,k,n) for(int i=k;i<=n;i++)
#define scan(d) scanf("%d",&d)
#define scanl(d) scanf("%I64d",&d)
#define scann(n,m) scanf("%d%d",&n,&m)
#define scannl(n,m) scanf("%I64d%I64d",&n,&m)
#define mst(a,k)  memset(a,k,sizeof(a))
#define LL long long
#define N 50005
#define mod 1000000007
inline int read(){int s=0;char ch=getchar();for(; ch<'0'||ch>'9'; ch=getchar());for(; ch>='0'&&ch<='9'; ch=getchar())s=s*10+ch-'0';return s;}

struct Edge
{
    int to,next;
}edge[N*2];
int head[N],tot;

void addedge(int u,int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}
int sonsize[N],sonmx[N];//子树大小,子树最大 大小
void dfssize(int u,int fa)  //求子树大小
{
    sonsize[u]=1; sonmx[u]=0;
    for(int i=head[u];~i;i=edge[i].next)
    {
        int v=edge[i].to;
        if(v==fa) continue;
        dfssize(v,u);
        sonsize[u] += sonsize[v];  //  DP思想
        sonmx[u] = max(sonmx[u],sonsize[v]);  //保留最大
    }
}
int root[N];
int num,minc;
void dfsroot(int r,int u,int fa) //求根为r的树的重心
{
    if(sonsize[r]-sonsize[u] > sonmx[u]) sonmx[u] = sonsize[r]-sonsize[u]; //u节点向上的子树
    if(sonmx[u]<minc) //子树最大的最小即为重心
    {
        minc=sonmx[u];
        num=0;
        root[num++]=u;
    }
    else if(sonmx[u]==minc)
    {
       root[num++]=u;
    }
    for(int i=head[u];~i;i=edge[i].next)
    {
        int v=edge[i].to;
        if(v==fa) continue;
        dfsroot(r,v,u);
    }
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n;
    while(~scan(n))
    {
        mst(head,-1); tot=0;
        REP(i,1,n)
        {
            int u,v;
            scann(u,v);
            addedge(u,v);
            addedge(v,u);
        }
        dfssize(1,-1);
        minc = 1<<30;
        dfsroot(1,1,-1);
        sort(root,root+num);
        for(int i=0;i<num;i++)
            printf("%d%c",root[i],i<num-1?' ':'\n');
    }


    return 0;
}


### POJ 树的重心问题解法 树的重心问题在POJ平台上的经典题目是 **POJ1655**。该问题的核心在于通过深度优先搜索(DFS)计算每个节点的子树大小,并进一步确定删除某个节点后,剩余部分的最大子树大小。最终目标是找到一个节点,使得删除该节点后,剩余的最大子树大小最小。 以下是关于该问题的具体解法和代码实现: #### 问题描述 给定一棵树,要找到树的重心树的重心定义为:删除某个节点后,所有生成的连通分量中,最大连通分量的节点数尽可能小。如果存在多个满足条件的节点,则输出编号最小的节点。 #### 解法思路 1. 使用 DFS 遍历整棵树,计算每个节点的子树大小 `son[u]`。 2. 在 DFS 过程中,对于每个节点 `u`,记录其所有子树的最大节点数 `Max`。 3. 计算当前节点 `u` 的父节点延伸出去的节点数目 `n - son[u]`。 4. 确定当前节点 `u` 删除后,剩余的最大子树大小 `tmp = max(Max, n - son[u])`。 5. 更新答案,选择使得 `tmp` 最小的节点作为重心。若 `tmp` 相等,则选择编号较小的节点。 #### 代码实现 以下是一个基于 C++ 的完整实现: ```cpp #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int N = 20005; int head[N], top = 0; int n; int son[N]; int ans, point; struct Edge { int v, next; } edge[N * 2]; void init() { memset(head, -1, sizeof(head)); top = 0; memset(son, 0, sizeof(son)); ans = n + 1; // 初始化为一个较大值 } void addedge(int u, int v) { edge[top].v = v; edge[top].next = head[u]; head[u] = top++; } void dfs(int u, int fa) { son[u] = 1; int Max = 0; for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].v; if (v == fa) continue; dfs(v, u); son[u] += son[v]; Max = max(Max, son[v]); } int tmp = max(Max, n - son[u]); if (tmp < ans || (tmp == ans && u < point)) { ans = tmp; point = u; } } int main() { int T; scanf("%d", &T); while (T--) { init(); scanf("%d", &n); int u, v; for (int i = 1; i < n; i++) { scanf("%d%d", &u, &v); addedge(u, v); addedge(v, u); } dfs(1, -1); printf("%d %d\n", point, ans); } return 0; } ``` #### 关键点解释 1. **初始化**:使用 `init()` 函数清空全局变量,确保每次测试用例独立运行[^3]。 2. **边的存储**:采用邻接表存储树的结构,便于快速访问每个节点的子节点。 3. **DFS 遍历**:通过递归方式计算每个节点的子树大小,并更新最大子树大小。 4. **结果更新**:在遍历过程中,实时更新最优解,确保最终答案满足题意。 #### 时间复杂度 - **DFS 遍历**:每个节点和边仅被访问一次,时间复杂度为 \(O(n)\)。 - **总复杂度**:对于多组测试数据,时间复杂度为 \(O(T \cdot n)\),其中 \(T\) 是测试用例数量,\(n\) 是节点数量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值