java 性能调优之内存模型深入详解

原创 2016年05月31日 15:56:03

1. 概述

      多任务和高并发是衡量一台计算机处理器的能力重要指标之一,虽然判断服务器的好坏主要跟CPU,内存,硬盘有关,比如说CUP核心数和线程,内存主要看内存的大小,硬盘主要看转速以及容量,但是服务器性能的高低与好坏,综合来说就是在使用的时候,每秒事务处理数这个指标最能说明问题,也就是说每秒内服务器平均能响应的请求数,它代表着一秒内服务器平均能响应的请求数,而TPS值与程序的并发能力有着非常密切的关系,因为他们的关系直接反映整个系统的吞吐量,大家知道服务器是由软件和硬件组成的,那么首先我们来讨论一下硬件,先简单介绍一下硬件的效率与一致性。

2.硬件的效率与一致性

     其实计算器的存储设备与处理器的运算能力不在同一层面上,也就说处理器的运算能力会受内存的读写功能影响,所以为了不影响处理器的运算能力,人们不得不在他们中间加一个缓存区,也就是高速缓存,将运算需要用到的数据提前复制到缓存中,节省运算处于等待的时间,运算完之后,再将缓存中的数据同步到内存中。

虽然这样可以解决内存和CPU的速度矛盾,同时引发了一个新的问题,也就是缓存一致性,因为现在的电脑有些是双核,四核,甚至是八核处理器,但是他们共享一个主内存,所有他们必须要有个协议,防止混乱或者是重复运算,保障数据的一致性,当然这些协议有MSI、MESI、MOSI及Dragon Protocol等。

Java虚拟机内存模型中定义的内存访问操作与硬件的缓存访问操作是具有可比性的,后续将介绍Java内存模型。


  除此之外,为了使得处理器内部的运算单元能竟可能被充分利用,处理器可能会对输入代码进行乱起执行(Out-Of-Order Execution)优化,处理器会在计算之后将对乱序执行的代码进行结果重组,保证结果准确性。与处理器的乱序执行优化类似,Java虚拟机的即时编译器中也有类似的指令重排序(Instruction Recorder)优化。

3.Java内存模型

  定义Java内存模型并不是一件容易的事情,这个模型必须定义得足够严谨,才能让Java的并发操作不会产生歧义;但是,也必须得足够宽松,使得虚拟机的实现能有足够的自由空间去利用硬件的各种特性(寄存器、高速缓存等)来获取更好的执行速度。经过长时间的验证和修补,在JDK1.5发布后,Java内存模型就已经成熟和完善起来了。

3.1 主内存与工作内存

  Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样底层细节。此处的变量与Java编程时所说的变量不一样,指包括了实例字段、静态字段和构成数组对象的元素,但是不包括局部变量与方法参数,后者是线程私有的,不会被共享。

  Java内存模型中规定了所有的变量都存储在主内存中,每条线程还有自己的工作内存(可以与前面将的处理器的高速缓存类比),线程的工作内存中保存了该线程使用到的变量到主内存副本拷贝,线程对变量的所有操作(读取、赋值)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同线程之间无法直接访问对方工作内存中的变量,线程间变量值的传递均需要在主内存来完成,线程、主内存和工作内存的交互关系如下图所示,和上图很类似。


3.2 内存间交互操作

  关于主内存与工作内存之间的具体交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步到主内存之间的实现细节,Java内存模型定义了以下八种操作来完成:

  • lock(锁定):作用于主内存的变量,把一个变量标识为一条线程独占状态。
  • unlock(解锁):作用于主内存变量,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
  • read(读取):作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用
  • load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
  • use(使用):作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎,每当虚拟机遇到一个需要使用变量的值的字节码指令时将会执行这个操作。
  • assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
  • store(存储):作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以便随后的write的操作。
  • write(写入):作用于主内存的变量,它把store操作从工作内存中一个变量的值传送到主内存的变量中。

  如果要把一个变量从主内存中复制到工作内存,就需要按顺寻地执行read和load操作,如果把变量从工作内存中同步回主内存中,就要按顺序地执行store和write操作。Java内存模型只要求上述操作必须按顺序执行,而没有保证必须是连续执行。也就是read和load之间,store和write之间是可以插入其他指令的,如对主内存中的变量a、b进行访问时,可能的顺序是read a,read b,load b, load a。Java内存模型还规定了在执行上述八种基本操作时,必须满足如下规则:

  • 不允许read和load、store和write操作之一单独出现
  • 不允许一个线程丢弃它的最近assign的操作,即变量在工作内存中改变了之后必须同步到主内存中。
  • 不允许一个线程无原因地(没有发生过任何assign操作)把数据从工作内存同步回主内存中。
  • 一个新的变量只能在主内存中诞生,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量。即就是对一个变量实施use和store操作之前,必须先执行过了assign和load操作。
  • 一个变量在同一时刻只允许一条线程对其进行lock操作,lock和unlock必须成对出现
  • 如果对一个变量执行lock操作,将会清空工作内存中此变量的值,在执行引擎使用这个变量前需要重新执行load或assign操作初始化变量的值
  • 如果一个变量事先没有被lock操作锁定,则不允许对它执行unlock操作;也不允许去unlock一个被其他线程锁定的变量。
  • 对一个变量执行unlock操作之前,必须先把此变量同步到主内存中(执行store和write操作)。

 3.3 重排序

  在执行程序时为了提高性能,编译器和处理器经常会对指令进行重排序。重排序分成三种类型:

  1. 编译器优化的重排序。编译器在不改变单线程程序语义放入前提下,可以重新安排语句的执行顺序。
  2. 指令级并行的重排序。现代处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。
  3. 内存系统的重排序。由于处理器使用缓存和读写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。

从Java源代码到最终实际执行的指令序列,会经过下面三种重排序:

为了保证内存的可见性,Java编译器在生成指令序列的适当位置会插入内存屏障指令来禁止特定类型的处理器重排序。Java内存模型把内存屏障分为LoadLoad、LoadStore、StoreLoad和StoreStore四种:


3.4 同步机制

介绍volatile、synchronized和final

3.5 原子性、可见性与有序性

介绍三个特性


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

java应用性能内存调优

  • 2013-07-05 10:51
  • 450KB
  • 下载

JVM内存模型与性能调优

jvm内存模型与内存错误Java虚拟机管理的内存将包含以下几个运行时数据区域:程序计数器、方法区,栈区,堆区,本地方法栈。(1)程序计数器是一块比较小的内存空间,它可以看做是当前线程所执行的字节码的行...

JVM内存模型与性能调优

Java是一门面向对象的编程语言,用对象来定义,描述和操作一切。对象数据存储在计算机内存中,Java的内存模型到底是个什么样子,让Java引为自豪的垃圾回收器又是如何工作的,如何针对JVM的内存管理进...

JVM调优-java虚拟机内存模型及参数设置

java虚拟机内存模型主要包括:程序计数器、虚拟机栈、本地方法栈、java堆、方法区。1:程序计数器程序计数器是一块很小的内存,每一个线程都必须用一个独立的程序计数器,用于记录下一条要运行的指令。各个...

认识JVM性能监控与故障处理工具&深入理解Java内存模型

先来复习昨天的UC面试: 1.

Spark——性能调优——执行模型与分区

一、序引     考虑到性能问题,而言Spark基本原理、执行模型、描述数据被shuffle(洗牌),乃是前提条件。     掌握数据序列化,缓存机制,以及内存管理、垃圾回收,亦十分必须。 二、...

性能估计(调优)——公式和模型

查阅相关资料整理而成。 《深入Nosql》(《Professional NoSQL》 )作者:(印)蒂瓦里Shashank Tiwari 《NoSQL数据库笔谈》作者:颜开 《编...
  • cbmsft
  • cbmsft
  • 2013-01-30 01:13
  • 2220

JVM调优(一)虚拟机的内存模型

Java字节码是运行在JVM虚拟机上的,同样的字节码使用不同的JVM参数运行,其性能表现可能各不一样。
  • matt8
  • matt8
  • 2016-08-22 10:14
  • 258

JVM内存模型 及 调优方案

(1)类装载子系统                 装载 连接 初始化 (2)方法区。被所有线程共享。垃圾收集也会清理方法区中的无用类型对...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)