Atitit 理财之道 信用卡账单管理之道 attilax总结 1. 信用卡账单管理 信用卡账单信息的目的,解决一下问题 2 1.1. 账单记录明细可追溯,原则上保留五十年 可按照时间  银行  卡

Atitit 理财之道 信用卡账单管理之道 attilax总结

 

1. 信用卡账单管理 信用卡账单信息的目的,解决一下问题 2

1.1. 账单记录明细可追溯,原则上保留五十年 可按照时间  银行  卡号 查询检索 可按照商品名称模糊检索  2

1.2. 可统计 总支出,分类支出总额 (高级功能)  2

2. 信用卡账单的存储(原始emldoc文件格式) 2

2.1. 维度规划 时间 银行 卡号 2

2.2. 聚集存储 优先于 乱序存储 3

2.3. 以时间维度进行聚集存储模式。每年一个文件夹,每月一个文件夹 3

2.4. 没有eml邮件的账单,可以导出与复制为doc模式文件 3

2.5. 储存体积规划,每月1m,十年百兆 五十年五百兆 3

3. 结构化存储 excelsqlite 3

3.1. 结构化存储需要对原始单据做结构化excel解析。可以大大减少体积。。 3

3.2. 五十年数据不过几个M就够了。 3

3.3. 方便检索 3

3.4. 方便统计 3

3.5. 工作量有点,可以随后进行,随用随加 3

4. 增加多维度检索索引 3

4.1. 维度规划 时间 银行 卡号 3

4.2. 针对银行 卡号不明的账单eml,最起码银行tag需要打上,就打在账单文件名上即可 4

4.3. 索引摘要存储 tree.txt 4

5. 账单检索 4

5.1. 按照时间检索,使用聚集索引一级级文件夹展开即可 4

5.2. 其他维度检索,比如银行,使用tag 字段模式检索文件名即可 使用everthing组合检索可以。也可以使用系统自带的检索工具 4

5.3. 全文检索,使用file localtor 4

6. 其他 4

6.1. 购物信息,可能还有一些商品的购物信息可能关联淘宝,京东,整张单。然后这个信息的存储,到时 4

6.2. 信息统计groupby,这个就麻烦些,需要etl,结构化  4

6.3. 可视化  略。。 4

6.4. 结构化数据与原始单据共存 5

6.5. 索引存储位置。单独存储 方便备份 5

 

1. 信用卡账单管理 信用卡账单信息的目的,解决一下问题

1.1. 账单记录明细可追溯,原则上保留五十年
可按照时间  银行  卡号 查询检索 可按照商品名称模糊检索

1.2. 可统计 总支出,分类支出总额 (高级功能)

cc  bill  mana sys solu

2. 信用卡账单的存储(原始emldoc文件格式)

2.1. 维度规划 时间 银行 卡号 

 

2.2. 聚集存储 优先于 乱序存储 

2.3. 以时间维度进行聚集存储模式。每年一个文件夹,每月一个文件夹

2.4. 没有eml邮件的账单,可以导出与复制为doc模式文件

2.5. 储存体积规划,每月1m,十年百兆 五十年五百兆

3. 结构化存储 excelsqlite

3.1. 结构化存储需要对原始单据做结构化excel解析。可以大大减少体积。。

3.2. 五十年数据不过几个M就够了。

3.3. 方便检索

3.4. 方便统计

3.5. 工作量有点,可以随后进行,随用随加

 

4. 增加多维度检索索引

4.1. 维度规划 时间 银行 卡号 

 

4.2. 针对银行 卡号不明的账单eml,最起码银行tag需要打上,就打在账单文件名上即可

4.3. 索引摘要存储 tree.txt

5. 账单检索

5.1. 按照时间检索,使用聚集索引一级级文件夹展开即可

5.2. 其他维度检索,比如银行,使用tag 字段模式检索文件名即可 使用everthing组合检索可以。也可以使用系统自带的检索工具

 

5.3. 全文检索,使用file localtor

 

6. 其他

6.1. 购物信息,可能还有一些商品的购物信息可能关联淘宝,京东,整张单。然后这个信息的存储,到时

6.2.  信息统计groupby,这个就麻烦些,需要etl,结构化

6.3. 可视化  略。。

 

 

6.4. 结构化数据与原始单据共存

6.5. 索引存储位置。单独存储 方便备份

 

 

作者:: 绰号:老哇的爪子claw of Eagle 偶像破坏者Iconoclast image-smasher

捕鸟王"Bird Catcher  kok  虔诚者Pious 宗教信仰捍卫者 Defender Of the Faith. 卡拉卡拉红斗篷 Caracalla red cloak 万兽之王  纵火者

简称:: Emir Attilax Akbar 埃米尔 阿提拉克斯 阿克巴

全名::Emir Attilax Akbar bin Mahmud bin  attila bin Solomon bin adam Al Rapanui 埃米尔 阿提拉克斯 阿克巴 本 马哈茂德 本 阿提拉 本 所罗门 本亚当  阿尔 拉帕努伊

常用名:艾提拉(艾龙),  EMAIL:1466519819@qq.com

 

 

头衔:uke总部o2o负责人,全球网格化项目创始人,

uke交友协会会长  uke捕猎协会会长 Emir Uke部落首席大酋长,

 

 

uke宗教与文化融合事务部部长,  uke制度与重大会议委员会委员长,uke保安部首席大队长,uke制度检查委员会副会长, uke机车协会主任 uke纹身协会

 

 uec学院校长, uecip图像处理机器视觉专业系主任   uke文档检索专业系主任

Uke图像处理与机器视觉学院首席院长

Uke 户外运动协会理事长  度假村首席大村长   uke出版社编辑总编

 

 

UTSC uke技术标准化委员会委员长 uke 首席cto   软件部门总监 技术部副总监  研发部门总监主管  产品部副经理 项目部副经理   uke科技研究院院长 uke软件培训大师

 

uke波利尼西亚区大区连锁负责人 汤加王国区域负责人 uke克尔格伦群岛区连锁负责人,莱恩群岛区连锁负责人,uke布维岛和南乔治亚和南桑威奇群岛大区连锁负责人

 Uke软件标准化协会理事长理事长 Uke 数据库与存储标准化协会副会长

 

uke终身教育学校副校长   Uke医院 与医学院方面的创始人

直达巴士西北区负责人   直达巴士长沙与西安分部部长

润昌通讯软件事业部总裁 执行长 分部负责人  执行委员会主席  

 

转载请注明来源:attilax的专栏  http://blog.csdn.net/attilax

http://www.cnblogs.com/attilax/

Microblog

http://weibo.com/u/5941179815   (common attilax)

https://weibo.com/p/1005055941179815  attilax201707,bek weibo

http://weibo.com/u/5487832265 (tech,for blog auto gene)

Qq 1466519819  小号112237553

 微信attilax  小号attilax201708

 

 

 

--Atiend  v14

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值