Atitit 判断判断一张图片是否包含另一张小图片

Atitit 判断判断一张图片是否包含另一张小图片 

 

1. keyword1

2.  模板匹配是在图像中寻找目标的方法之一(切割+图像相似度计算)1

3. 匹配效果2

4. 图片相似度的算法(感知哈希算法Perceptual hash algorithm2

5. 性能结果2

6. 如何提升性能3

6.1. 可以采用简化的算法。二次匹配法,先大概确定区域3

6.2. 切割图片设置一个step3

7. 参考资料3

8. ------code3

 

1. keyword

 

图像匹配

图片是否另外一张图片的一部分

如果是标准图片,模板匹配就好

 

2.  模板匹配是在图像中寻找目标的方法之一(切割+图像相似度计算)

Come On, Boy.我们一起来看看模板匹配到底是怎么回事。

模板匹配的工作方式
    模板匹配的工作方式跟直方图的反向投影基本一样,大致过程是这样的:通过在输入图像上滑动图像块对实际的图像块和输入图像进行匹配。
    假设我们有一张100x100的输入图像,有一张10x10的模板图像,查找的过程是这样的:
  1)从输入图像的左上角(0,0)开始,切割一块(0,0)(10,10)的临时图像;
  2)用临时图像和模板图像进行对比,对比结果记为c
  3)对比结果c,就是结果图像(0,0)处的像素值;
  4)切割输入图像从(0,1)(10,11)的临时图像,对比,并记录到结果图像;
  5)重复(1)~(4)步直到输入图像的右下角。
    大家可以看到,直方图反向投影对比的是直方图,而模板匹配对比的是图像的像素值;模板匹配比直方图反向投影速度要快一些,但是我个人认为直方图反向投影的鲁棒性会更好。

 

3. 匹配效果

效果不错,基本可以确定查找到对应的区域坐标。。对于彩色图片,可以使用色彩空间信息排除掉其他错误的匹配图片,几乎可以精确的确定一个图片了。。

4. 图片相似度的算法(感知哈希算法Perceptual hash algorithm

感知哈希算法Perceptual hash algorithm),它的作用是对每张图片生成一个“指纹”(fingerprint)字符串,然后比较不同图片的指纹。结果越接近,就说明图片越相似。

下面是一个最简单的实现:

第一步,缩小尺寸。将图片缩小到

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值