Implementation codes of Data Structures and Algorithm Analysis in C (1)

CHAPTER 1

P23 Maximum Subsequence Problem

#include<iostream>
#include<windows.h>
#include<ctime>
#include<stdio.h>
using namespace std;


class MaxSubsequenceSum
{
public:
	MaxSubsequenceSum(int *Array, int Left1, int Right1):A(Array), Left(Left1), Right(Right1)
	{
		outcome = 0;
	}

	int maxx(int a = 0, int b = 0, int c = 0)
	{
		int temp = a>b?a:b;
		return (temp>c?temp:c);
	}

	int MaxSubsequenceSum1()
	{
		int ThisSum, MaxSum, i, j, k;
		MaxSum = 0;
		for (i = Left; i <= Right; i++)
		{
			for (j = i; j <= Right; j++)
			{
				ThisSum = 0;
				for (k = i; k <= j; k++)
					ThisSum += A[k];
				if (ThisSum > MaxSum)
					MaxSum = ThisSum;
			}
		}
		return MaxSum;
	}

	int MaxSubsequenceSum2()
	{
		int ThisSum, MaxSum, i, j;
		MaxSum = 0;
		for (i = Left; i <= Right; i++)
		{
			ThisSum = 0;
			for (j = i; j <= Right; j++)
			{
				ThisSum += A[j];
				if (ThisSum > MaxSum)
					MaxSum = ThisSum;
			}
		}
		return MaxSum;
	}

	int MaxMub3(int A[], int Left, int Right, int middle)
	{
		int max1 = A[middle];
		int count = 0;
		for (int i=middle; i>=Left; i--)
		{
			count += A[i];
			if (count > max1)
				max1 = count;
		}
		int max2 = A[middle];
		count = 0;
		for (int i = middle; i<=Right; i++)
		{
			count += A[i];
			if (count > max2)
				max2 = count;
		}
		return (max1+max2-A[middle]);
	}

	int MaxSub3(int Array[], int Left1, int Right1)
	{
		int middle = int ((Left1+Right1)/2);
		int subleft, subright, submiddle;
		if (Left1==Right1)
			return Array[Left1];
		if (Left1==Right1-1)
			return Array[Right1];
		subleft = MaxSub3(Array, Left1, middle);
		subright = MaxSub3(Array, middle, Right1);
		submiddle = MaxMub3(Array, Left1, Right1, int((Left1+Right1)/2));
		return maxx(subleft, subright, submiddle);
	}

	int MaxSubsequenceSum3()
	{
		return MaxSub3(A, Left, Right);
	}

	int MaxSubsequenceSum4()
	{
		int ThisSum, MaxSum, j;
		ThisSum = MaxSum = 0;
		for (j = Left; j<=Right; j++)
		{
			ThisSum += A[j];
			if (ThisSum > MaxSum)
				MaxSum = ThisSum;
			else if(ThisSum < 0)
				ThisSum = 0;
		}
		return MaxSum;
	}

	int MaxSubsuquenceSum(int x)
	{
		switch(x)
		{
		case 1:
			{
				outcome = MaxSubsequenceSum1();
				printf("Algorithm 1\nOutcome: %d\nTime Complexity: O(n^3)\n", outcome);
				break;
			}
		case 2:
			{
				outcome = MaxSubsequenceSum2();
				printf("Algorithm 2\nOutcome: %d\nTime Complexity: O(n^2)\n", outcome);
				break;
			}
		case 3:
			{
				outcome = MaxSubsequenceSum3();
				printf("Algorithm 3\nOutcome: %d\nTime Complexity: O(n*logn)\n", outcome);
				break;
			}
		case 4:
			{
				outcome = MaxSubsequenceSum4();
				printf("Algorithm 4\nOutcome: %d\nTime Complexity: O(n)\n", outcome);
				break;
			}
		default:
			{
				cout<<"Input Error!"<<endl;
				return -1;
			}
		}
	}

private:
	int *A;
	int Left;
	int Right;
	int outcome;


};

void main()
{
	time_t start,end,time;
	const int N = 30;
	int Array[30] = {-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,2,3,4,5,6,7,-1,-1,-1,-1,-111,-1,-1};
	start=clock();
	MaxSubsequenceSum a(Array, 0, N-1);
	a.MaxSubsuquenceSum(1);
	end=clock();
	time=end-start;
	long ti = time;
	printf("Running time:%d ms\n\n", ti);
}



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值