关闭

Java与算法之(4) - 数字全排列

标签: 全排列深度优先算法
5439人阅读 评论(0) 收藏 举报
分类:

全排列是指n个数(或其他字符)所有可能的排列顺序,例如1 2 3三个数字的全排列是

1 2 3 
1 3 2 
2 1 3 
2 3 1 
3 1 2 
3 2 1 

那么问题来了,任意输入一个大于1的数字n,列出1-n这n个数字的全排列。

如果尝试手动列举一下1 2 3的全排列,会发现通常我们会在头脑中制定好规则,并按照既定规则进行枚举,从而得到所有排列。

在这里我们制定的规则是:

(想象我们手里拿了3个数字,地上有A、B、C三个空位)

1)在每一个空位前,都按照1->2->3的顺序尝试放下一个数字,如果该数字已经放下则尝试下一个

2)每放下一个数字后向后移动一格,然后重复1->2->3的尝试

3)如果当前位置没有新的可能性,取回当前位置的数字并左移一格从新尝试

按上面规则很容易推算出第一种排列是1 2 3

取回3,返回B位置,取回2,然后按1->2->3尝试,发现可以放下3,右移到C,尝试后放下2,得到1 3 2

接下来必须返回到A的位置才有新的可能性,此时已经取回所有数字,按规则放下2,移到B,放下1,移到C,放下3,得到2 1 3

。。。

下面来看实现的代码:

public class Permutation {

	private int max;
	private int[] array;
	private int[] hold;
	
	public Permutation(int max) {
		this.max = max;
		array = new int[max + 1];
		hold = new int[max + 1];
	}
	
	public void permute(int step) {
		if(step == max + 1) {
			for(int i = 1; i <= max; i++) {
				System.out.print(array[i] + " ");
			}
			System.out.println();
			return;  //返回上一步, 即最近一次调用permute方法的后一行
		}
		//按照1->2->3->...->n的顺序尝试
		for(int num = 1; num <= max; num++) {
			//判断是否还持有该数字
			if(hold[num] == 0) {
				array[step] = num;
				hold[num] = 1;
				//递归: 右移一格重复遍历数字的尝试
				permute(step + 1);
				//回到当前位置时取回当前位置数字
				hold[num] = 0;
			}
		}
	}
	
	public static void main(String[] args) {
		Permutation fa = new Permutation(3);
		fa.permute(1);
	}
}

运行输出

1 2 3 
1 3 2 
2 1 3 
2 3 1 
3 1 2 
3 2 1 

我们用一个伪时序图来帮助理解递归调用的执行过程


顺便说一句,全排列问题还有多种算法,本文中使用的是深度优先算法的模型。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:411224次
    • 积分:3791
    • 等级:
    • 排名:第8441名
    • 原创:54篇
    • 转载:1篇
    • 译文:0篇
    • 评论:51条
    博客专栏
    文章分类
    最新评论