K-means聚类算法

K-means是一种经典的基于划分的无监督聚类算法,其基本原理是通过迭代优化找到使样本到中心距离平方和最小的聚类。文章介绍了k-means++的初始化策略,以解决原始k-means对初始中心点敏感的问题。此外,还探讨了Kernel K-means和Spectral Clustering作为k-means的扩展,用于处理非标准正态分布和非均匀样本。最后,提到了二分k-means算法,以避免局部最小值的问题。
摘要由CSDN通过智能技术生成

K-means(K均值)是基于数据划分的无监督聚类算法,也是数据挖掘领域的十大算法之一。

何为聚类算法?在某种程度上可以理解为无监督的分类方法。

聚类算法可以分为哪些部分? 一般来说可以分为基于划分的方法、基于连通性的方法、基于密度的方法、基于概率分布模型的方法等。K-means就是经典的基于划分的聚类方法。

1、K-means的基本原理

对于基于划分的这一类聚类算法而言,其方法是将样本的矢量空间划分为多个区域 Si|ki=1 ,每个区域都存在一个区域中心 Ci|ki=1 ,这样对于每一个样本,都可以建立一种样本到区域中心的映射 q(x) :

q(x)=i=1k1(xSi)Ci

其中1()为指示函数,即代表样本x是否属于区域S。

不同的基于划分的聚类算法的主要区别就在于如何建立相应的映射方式 q(x) 。在k-means中,映射是通过样本与各中心之间的误差平方和最小这一准则来建立的。

k-means算法的主要实现步骤有以下四步:

  1. 初始化聚类中心 C(0)1 ,
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值