- 博客(2266)
- 资源 (9)
- 收藏
- 关注

原创 企业DevOps探讨:“谁构建、谁运行”原则的理论基础
“谁构建,谁运行” --沃纳·沃格尔这样的场景大家想必不会陌生:我们正与家人共度美好时光,突然刺耳的电话铃声嗡嗡响起,我们的注意力也为之吸引。听筒中的尖叫声告知,我们的应用程序——也就是那些定期受到内存泄漏侵扰、但重启之后又能恢复正常的小冤家们——现在终于彻底起义了,服务器资源在几分钟之内就被其彻底榨干。目前该应用已经无法正常起效,而运维团队除了尝试重启与回滚之外无法可想——而最新
2015-12-30 15:18:26
9574

原创 企业DevOps:实施过程中需要关注的各项要点
作者:亚马逊云科技企业市场战略总监Stephen Orban“经验并非凭空创造,而是依靠点滴积累所实现” ---阿尔贝·加缪在此次的企业DevOps探索之旅系列文章当中,我将带大家一同探讨企业在具备一定DevOps经验之后又该如何处理下一步可能面临的状况。当然,这些只是我个人在接触自动化、面向客户服务之IT体系以及“谁构建、谁运行”方面事务的同时积累下的一些心得体
2015-12-29 19:36:50
8185

翻译 将DevOps纳入企业环境引发的思考
作者:亚马逊云科技企业市场战略总监Stephen Orban“发展是一种以渐进式改善为载体的持续性行为”——英德拉瓦蒂虽然DevOps可以算是相对新鲜的概念,不过在我看来、其本质思路很早之前就已经出现。从这个角度看,目前很多企业已经广泛接纳这一概念并将其作为文化性产物看待,具体而言就是将大量原本孤立的团队融合起来,从而实现速度更快、频率更高且更为可靠的工作成果。我个人非常幸运
2015-10-13 17:38:41
6462

翻译 利用Amazon Machine Learning与Amazon Redshift建立二进制分类模型
日常生活中的大部分决策都以二进制形式存在,具体来说就是这类问题能够以是或者否来回答。而在商业活动中,能够以二进制方式回答的问题也有很多。举例来说:“这种情况是否属于交易欺诈?”,“这位客户是否会购买该产品?”或者“这位用户是否存在流失风险?”等等。在机器学习机制中,我们将此称为二进制分类问题。很多商业决策都能够通过准确预测二进制问题的答案来得到强化。Amazon Michine Learning(
2015-09-07 17:10:46
8376

翻译 利用Amazon Mobile Analytics与R深入探究移动应用的使用模式
作者:Sandeep Atluri 亚马逊数据科学家要真正鼓励用户使用我们的移动应用程序,最重要的前提就是深入了解用户使用应用程序时的行为模式,而后据此作出体验优化。不过通过应用程序事件数据来找出有意义的模式往往极具挑战性,而标准KPI所提供的诸如月度活跃用户(简称MAU)以及每日活跃用户(简称DAU)并不足以勾勒出完整的图景。举例来说,所发布应用在过去三十天中的用户开启次数能够帮
2015-08-31 18:33:41
6903

翻译 亚马逊云科技使用心得:当初我曾错过的那些宝贵经验
在今天的文章中,我整理出了大量当初曾经错过、而至今仍将我追悔莫及的亚马逊云科技(Amazon Web Services)使用心得。在几年来的实践当中,我通过在亚马逊云科技之上新手构建及部署各类应用程序而积累到了这些经验。虽然内容有些杂乱,但相信仍然能给各位带来一点启示。从物理服务器向“云环境”转移的过程不仅仅是一项技术任务,同时也意味着我们的思维方式需要作出针对性的转变。总体而言,在物理环境下我们
2015-07-08 22:52:17
28944
转载 上新了!亚麻云|性能飙升40%!Graviton4落地中国区域
的Amazon EBS带宽,较同规格的Amazon Graviton4实例具有更强的存储性能。目前,基于Amazon Graviton4的实例家族已涵盖通用型(M8g)、计算优化型(C8g)、内存优化型(R8g)、存储优化型(I8ge)以及网络优化型(R8gn)等全系列,为用户提供了更全面的选择。Amazon Graviton系列产品的持续更新,展现了亚马逊云科技在处理器技术上的创新实力,更不断为全球客户优化特定工作负载性能提供了更多选择。的网络带宽,创下网络优化型Amazon EC2实例的新纪录。
2025-09-29 11:11:53
18
转载 想不写代码开发3D游戏?用Q CLI就“构”了!
创建一个赛车的小游戏,放到这个路径/Users/valyli/three-js-demo.创建之前,先做规划,确定创建的步骤.把这个计划写入一个markdown文档.后续创建过程中,每一个步骤都重新与这个计划文档进行核对,并标注完成的状态.通过这个方法来确保创建过程的质量,保证最终输出的游戏工程可以正确运行.在这个版本中,最重要的是做出这个小游戏,能够正常演示.并不需要复杂的玩法和功能.可以看到,对于3D场景,模型在坐标系上的处理还稍显逊色,辅助输入更多的调试信息才能修正,示例如下。
2025-09-25 11:07:09
31
转载 【直播预告】从无序到有序:规范驱动开发为何如此重要?
2018年加入亚马逊云科技,历任解决方案架构师、解决方案研发经理,现负责智能开发产品线的市场战略拓展。9月24日19:00,亚马逊云科技智能开发产品拓展经理施乔携手前掘金CTO、AI连续创业者牙医Karminski,发起一场关于规范驱动开发的技术对谈。当AI让代码自动对齐架构意图,当智能规格持续校准功能实现,开发便不再是绞尽脑汁的消耗,而是品味茶香的高效创作!前掘金社区技术负责人,连续AI创业者,目前专注于小型企业的AI落地。AI编程时代,是效率的提升还是混乱的开始。让规范成为AI时代的“开发翻译官”
2025-09-24 11:19:32
39
转载 两种方案任选,拿捏跨账户访问S3存储桶难题!
而上一代的权限管理方式,则主要是使用ACL实现的,它能够支持对象粒度的权限控制,但在跨账户场景下容易出现权限问题,当对象所有者与存储桶所有者不同时,存储桶拥有者可能无法控制其他账户上传的对象。当前的Amazon S3服务在新建存储桶时,您会看到有一个关于Object Ownership的选项,默认和推荐选项是“ACLs Disabled”,然后使用存储桶策略或者Amazon IAM策略都可以实现灵活安全的权限管理能力。,尤其是在集中式日志管理、共享数据仓库等场景下。
2025-09-23 11:08:09
50
转载 利用Lambda,部署Streamable HTTP MCP Server
可以发起一个GET请求/message,要求在/message上创建SSE连接),除此之外其他请求都是标准的POST请求,并且在初始化阶段MCP Server可以返回Mcp-Session-Id作为整个通信阶段的会话ID。亚马逊云科技资深解决方案架构师,专注于游戏行业。整个调用期间,MCP Client需要一直和MCP Server保持/sse端点的长链接不能断开,否则会可能丢失某次调用的数据。,并在每个阶段插入可重用的中间件,而Middy-mcp是一个Middy框架的中间件,它提供了MCP协议的支持。
2025-09-22 11:12:22
97
转载 疯狂星期五,高能不落幕!Qwen3空降Bedrock
Qwen3-Coder-480B-A35B、Qwen3-Coder-30B-A3B-Instruct和Qwen3-235B-A22B-Instruct-2507等MoE模型,在处理每个请求时仅激活部分参数,能以高效推理实现高性能。而稠密型的Qwen3-32B模型会激活全部参数,可提供更稳定且可预测的性能。Qwen3-Coder-480B-A35B-Instruct、Qwen3-Coder-30B-A3B-Instruct、Qwen3-235B-A22B-Instruct-2507和Qwen3-32B(
2025-09-19 12:52:41
72
转载 前方高能!DeepSeek-V3.1来了!
初次使用DeepSeek-V3.1模型,请登录Amazon Bedrock控制台,在左侧导航栏的“Bedrock配置”下选择模型访问(Model access)。此后,客户可通过Amazon Bedrock借助DeepSeek-R1的能力构建生成式AI应用,同时依托Amazon Bedrock强大的安全防护与全面工具链,实现安全可靠的AI部署。接着点击左上角的选择模型(Select model),在模型分类中选择DeepSeek,并选中DeepSeek-V3.1模型,最后点击应用(Apply)即可。
2025-09-19 12:43:34
75
转载 这种解决提示词膨胀的方法,优雅!真优雅!
是一个用来管理本地文件夹的MCP Server,通过列出其中的Tools可以发现:一个MCP Server中的Tools如果不进行预筛选而直接发送给LLM,则需要耗费大量的Token,如果Tool Use过程出现多次,那么每次的Token花费会成倍增长。自定义Chunking,使用Amazon Lambda进行切分,并将切分块进行保存,在下面代码中,通过获取Tools列表,并将所有的Tools保存成一个jsonl文件,每个tool一行,这样会在。(在下面代码中使用的是语意检索,混合检索请参考文档)。
2025-09-16 11:10:32
83
转载 Bedrock构建SEO解决方案,一站式搞定流量挖掘到智能创作!
随着生成式AI技术的不断发展,这套系统还有很大的优化空间。本解决方案将遵循搜索引擎的核心原则——为用户提供真正有价值的内容,从关键词挖掘、搜索意图分析到内容智能创作,为您展示一个完整的、可实施的SEO内容生成流程。在下图中,系统返回了2741条相关关键词数据,清晰展示了每个关键词的搜索量和竞争程度,帮助精准定位用户真正的搜索需求,为后续内容创作提供明确方向。例如,可以优先考虑头部高流量关键词,如上图中的“pajama sets”,通过调用搜索引擎API,分析返回的内容确定用户对此关键词的真实需求,
2025-09-15 11:17:03
75
转载 仅用12小时定制模型,Nova实现角色一致、风格连贯的AI分镜设计
模型运行去重算法,移除语义相似度超过阈值的图像——由于冗余或近乎相同的视频帧可能导致模型过拟合,即模型对训练数据的学习过于精准,甚至学习到其中的噪声与波动,从而遇到未见过的新数据就可能表现不佳,因此这一做法有助于构建多样化的数据集。通过针对特定角色与风格微调Amazon Nova Canvas模型,本方案实现的一致性水平已然超越标准提示词工程所能达成的效果,让创意团队能够在短短数小时内即可创作出高质量的分镜脚本,而无需再花费数周时间。更多详细信息,请参阅《自定义模型的访问与安全》。,识别目标帧与目标角色。
2025-09-12 11:13:45
91
转载 仅用12小时定制模型,Nova实现角色一致、风格连贯的AI分镜设计|下篇
模型运行去重算法,移除语义相似度超过阈值的图像——由于冗余或近乎相同的视频帧可能导致模型过拟合,即模型对训练数据的学习过于精准,甚至学习到其中的噪声与波动,从而遇到未见过的新数据就可能表现不佳,因此这一做法有助于构建多样化的数据集。通过针对特定角色与风格微调Amazon Nova Canvas模型,本方案实现的一致性水平已然超越标准提示词工程所能达成的效果,让创意团队能够在短短数小时内即可创作出高质量的分镜脚本,而无需再花费数周时间。更多详细信息,请参阅《自定义模型的访问与安全》。,识别目标帧与目标角色。
2025-09-12 11:13:45
61
转载 角色一致、风格连贯、故事流畅!Nova搞定AI分镜设计超实用攻略|上篇
他主导大规模生成式AI项目的落地实施,将先进的AI能力与可投入生产的业务解决方案相结合,同时兼顾优化成本与解决方案弹性。画面采用粗重的线条、浓重的阴影与平涂色调,运用高对比度光线及漫画分镜特有的电影感构图,同时通过富有表现力的线条传递情绪与动态感。画面采用粗重的线条、浓重的阴影与平涂色调,运用高对比度光线及漫画分镜特有的电影感构图,同时通过富有表现力的线条传递情绪与动态感。画面采用粗重的线条、浓重的阴影与平涂色调,运用高对比度光线及漫画分镜特有的电影感构图,同时通过富有表现力的线条传递情绪与动态感。
2025-09-11 11:33:32
196
转载 Graviton4实例中国区域首发!性能提升30%!
到2023年底,Paytm的80%的Amazon EMR工作负载在Amazon Graviton上运行,从而获得了更好的性能。“将工作负载迁移到基于Amazon Graviton的实例的一个好处是,这些工作负载的功能兼容性和性能由亚马逊云科技管理,因此,我们需要管理的复杂性更少。Sprinklr将部分Amazon ElastiCache工作负载以及80%的Amazon EKS和Amazon Keyspaces工作负载,运行在由最新Amazon Graviton处理器驱动的Amazon EC2实例上。
2025-09-10 12:08:19
108
转载 用AI相伴,亚马逊云科技祝全体教师节日快乐!
五折认证,一次不过,免费重考,并享受官方备考服务。*本文文案由Amazon Nova Pro生成。AWS AI/ML认证挑战。星标不迷路,开发更极速!亚马逊云科技祝全体教师。听说,点完下面4个按钮。为您的未来提供动力!就不会碰到bug了!
2025-09-10 12:08:19
98
原创 Strands Agents SDK 助力翰德 Hudson 实现智能招聘新突破
智能体通过 Agentic AI Strands 作为中央协调者,利用大模型提供智能处理能力,并通过调用不同的 MCP Servers(如推荐报告智能体处理简历)以及 Multi-Agent 架构来完成复杂的自动化任务,同时引入 Langfuse 对 Agent 的调用和协作进行全链路的监控。这种开放且多元的模型生态,使得 Strands Agents SDK 具备极强的适应性和扩展性,帮助企业充分发挥自有模型优势,同时享受亚马逊云科技提供的稳定、安全的云端基础设施支持。
2025-09-10 09:02:13
399
转载 别再被低质数据拖后腿了!Strands Agents为你保驾护航
dbt MCP Server是一项开源的元数据服务,基于dbt项目的manifest、catalog等文件构建,提供标准化API接口,支持项目构建、测试、获取模型依赖、列级血缘、描述信息等。它可以与多个工具集成,如数据质量监控系统、指标平台(如Lightdash)、AI Agents工具(如Strands)等,帮助系统实现自动化的数据血缘分析和异常诊断。在实际生产环境中,当数据质量出现问题时,数据工程师常常需要花费大量时间来排查原因,这严重影响了团队的工作效率和数据产品的可靠性。
2025-09-09 11:15:38
111
转载 9月15日前,Kiro免费用!
若您已开通付费套餐,您的月度使用限额已于9月1日重置,在9月15日之前,您都可按照完整月度限额免费畅享Kiro服务。本次Kiro黑客松活动的作品提交截止日期为9月15日,在此之前,您可按照本文所述的相同条款免费使用Kiro。如果您已订阅Kiro,9月1日系统便会扣除9月使用费用,但您放心,9月15日前这笔费用将原路退还。正式推出新定价方案前,会提前告知您相关更新信息,让您有充足时间判断这些调整是否符合您的需求。,您可以继续免费使用Kiro,9月份已产生的费用将全额退还,确保您的免费使用权益不受影响。
2025-09-05 12:36:45
402
转载 时间直降30%、准确率暴涨80%!Bedrock让金融数据检索又快又准
该方案将企业级搜索能力与LLM相融合,既能精准理解用户真实意图,又能从结构化、非结构化数据源中提取相关信息,让分析师不仅能快速找到特定汇总报表,还能清晰掌握业务流程,需要时也能获取相关技术细节。即便经验丰富的分析师,也难以从不同系统的零散信息中,拼凑出完整的业务流程内容。”“季度规划流程是怎样的?该方案通过集成Amazon Kendra企业版索引、Amazon Bedrock与先进LLM,实现了出色的搜索精准度,证明了构建复杂的AI驱动检索系统不仅完全可行,而且能够发挥出色效能,为企业带来显著的效益提升。
2025-09-05 11:21:51
112
转载 数据不完整也能精准预测PM2.5浓度?SageMaker说到做到!
3.随后,状态机会启动另一个Lambda函数,该函数负责从Amazon S3中检索刚刚存储的记录,并借助您基于历史PM2.5数据训练的预测模型所创建的Amazon SageMaker模型,在您的VPC环境中启动Amazon SageMaker批量转换任务。2.该状态机首先会调用Amazon VPC内的一个Lambda函数,该函数会从用户部署在兼容PostgreSQL的Amazon Aurora上的空气质量数据库,检索并提取包含缺失空气质量值的记录,然后将其存储到Amazon S3存储桶中的CSV文件。
2025-09-04 11:31:51
103
原创 基于 CoT 协调多 MCP Tool — 智能运维 Redshift
CoT MCP Server:在 Amazon S3 上以 Markdown 格式存储了一些常见问题的处理思路,然后通过 CoT MCP Server 做了一个简易的 RAG ,让 LLM 推理返回一个任务清单(to-do list),并在 Amazon DynamoDB 中创建一个 session 记录任务清单(to-do list)。Amazon Q Developer 是亚马逊云科技推出的一款生成式 AI 助手,加速整个软件开发生命周期的构建,从设计、开发、测试和运维,到执行软件升级。
2025-09-04 09:37:58
834
转载 将Go应用从x86迁移至Graviton:典型场景与实战经验一文打尽!
即获取到当前goroutine的g结构地址,根据偏移量计算出成员goid int的地址,然后取出该值即可,这种方法性能较好(5us/10000),但直接操作内存,可能会导致不易预测的问题。中添加Goid函数,将goid暴露给应用层,缺点在于程序只能在修改了源代码的机器上才能编译,没有移植性,每次go版本升级以后,都需要重新修改源代码,维护成本较高。但无论技术如何发展,的代码,发现有如下图所示的一段代码,通过调用Go汇编提供的方法来获取goroutine的内存地址,从而来做goroutine标记。
2025-09-02 13:46:10
89
原创 基于 Amazon Q Developer+Remote MCP 访问 Amazon Redshift
Amazon Q Developer 结合模型上下文协议(MCP)实现了与 Amazon Redshift 的创新集成,使开发者能够通过自然语言直接查询和分析数据仓库中的信息,比如查询数据仓库中的业务表数据,以及自动生成系统表的 SQL 定位 Amazon Redshift 常见问题。
2025-09-02 09:24:14
920
转载 “说人话”就出数据报表,Amazon Q助你秒变金牌分析师!
建议在Amazon Redshift中构建合理的数据建模结构,如星型模型或雪花模型,通过视图或数据处理管道预处理数据,使字段关系清晰、含义明确。示例数据库ticket为例,这个数据库包含七个表:两个事实表和五个维度,可以帮助分析人员跟踪虚构的TICKIT网站的销售活动,用户可以在该网站上在线购买和销售体育赛事、演出和音乐会的门票。将数据集导入SPICE后,查询无需每次触发Amazon Redshift查询,既能减少对数据源的压力,又提升了用户交互体验,适用于频繁访问的仪表板和分析看板。
2025-09-01 11:18:29
120
转载 搜索不准劝退用户?泰森食品用Bedrock构建更懂你的AI助手破局!
下图展示了该生成式AI助手的高层架构。传统的网络分析工具往往只是通过页面浏览量、点击量和网站停留时长等指标,来追踪用户行为,本方案则分析用户与AI助手自然交互所产生的海量对话数据,从而更深入更透彻地理解客户的兴趣和需求,使泰森食品公司能够前所未有地清晰洞察客户的兴趣倾向、痛点问题以及购买意向。在用户与系统交互的过程中,每当用户提出需要详细的产品信息、咨询特定产品类别、探索烹饪方法或食谱创意、查找所在地区的经销商信息,或是表示出对批量采购或促销活动的兴趣时,系统都会识别并记录这些具有高价值属性的交互行为。
2025-08-28 12:11:18
154
原创 快时尚电商行业智能体设计思路与应用实践(三)借助 Transcribe/Polly 打造新一代智能语音客服,实现媲美人工客服的对话体验
原型示例的场景设定为快时尚电商行业的智能语音客服。借助 Transcribe/Polly,对本系列的第二篇博客的 LangChain+MCP 实现的智能客服系统进行 S2S 功能延展,实现高度拟人的语音交互体验。原型示例展示了 ASR/LLM/TTS 的全过程,包括智能语音录制、动态结束检测、音频播放打断机制、客户服务处理逻辑以及跨平台兼容性处理,可以在 MacOS,Windows 和 Linux 上运行。
2025-08-28 08:55:47
951
转载 从「氛围编程」到「氛围工程」:Kiro让每个开发者秒变“百人团队”
Kiro提前帮您做好架构设计、代码规范、工具链集成,让您开发出的游戏不仅能玩,更符合企业级项目的标准,不再是简单的“玩具代码”。——1位只精通后端逻辑的工程师,无需学习复杂的图形或音频工具,就能独立完成高质量的多媒体模块开发,这极大拓宽了个人能力边界,让“全栈”变得更加名副其实。从项目规划开始,开发者通过Kiro Specs就能将模糊的业务需求转化为结构化的工程蓝图,下图就是把“想做个消消乐”的想法,拆解成清晰的需求、结构化的设计和可执行的任务。Kiro生成的标准化文档和任务,也让协作沟通的成本趋近于零。
2025-08-27 11:09:44
173
转载 香氛实验室:用Nova打造个性化体验,让产品与营销脱颖而出!
以进一步拓展Amazon Nova Pro的能力,使其不再局限于预训练阶段所掌握的知识范畴,而是能够访问丰富多样的相关知识来源,包括基本香气设计原则、对每种可用成分的深入理解、成分特性及其在香氛中可能发挥的作用,还有成分与用户气味特质之间潜在联系等。虽然在戛纳国际创意节上,亚马逊云科技香氛实验室聚焦于展示个性化香氛的研发,以及广告宣传活动的创意打造。该项目最初的开发愿景是融合实体与数字体验,打造出一种别具一格的体验形式,既能彰显创意、广告与消费品的魅力,又能捕捉法国里维埃拉地区的独特风情。
2025-08-26 13:20:09
119
原创 Amazon Q Developer CLI + 飞书——打造对话式的 AI Agent 智能运维平台
5、接受 IAM Identity Center的邀请:您需要登录到注册的邮箱,找到一封标题为“Invitation to join Amazon IAM Identity Center “的邮件,点击接受邀请(Accept invitation),使用刚刚在 IAM Identity Center 设置的 User name,重置密码后点击登录, 注意密码需要满足:8-64个字符,大写和小写字母,数字,非字母数字符。在现代云原生架构中,越来越多的组织采用微服务模式,系统由多个团队共同维护。
2025-08-26 09:25:17
698
转载 让AI对话更高效:Bedrock Converse API迁移指南
使用Amazon Bedrock,您可以轻松试验和评估适合您的使用案例的热门FM,通过微调和检索增强生成(RAG)等技术,利用您的数据对其进行私人定制,并构建使用您的企业系统和数据来源执行任务的Agent。,通过单个API,提供来自包括亚马逊云科技在内的领先人工智能公司的高性能基础模型(FM),并提供通过安全性、隐私性和负责任的AI构建生成式AI应用程序所需的一系列广泛功能。,每个FM的推理参数遵循模型提供商的定义,因此参数可能会根据您使用的FM而有所不同,从而提高了业务代码维护的难度。
2025-08-25 12:13:10
124
转载 AgentCore Gateway:重塑企业级AI Agents工具开发格局
对于复杂的数据结构,需包含详细的字段说明、验证规则和示例,同时保持全文术语的一致性。同时,为实现最佳的工具发现效果,应在描述中自然融入相关业务领域的关键词,并说明每个API的适用场景。是企业级AI Agents开发领域的一项重大突破,它为工具集成提供了全托管、安全且可扩展的解决方案,使企业能够在确保企业级安全与合规管控的前提下,加速推进AI项目落地。对于向目标API发起的出站OAuth身份验证,AgentCore Gateway支持2LO的客户端凭证授权模式,可在无需用户交互的情况下,实现安全的。
2025-08-22 11:03:42
194
转载 基于EKS,利用DeepSpeed玩转模型分布式训练
亚马逊云科技机器学习产品技术专家,负责基于亚马逊云科技的机器学习方案的咨询与设计,专注于机器学习的推广与应用,深度参与了诸多真实客户的机器学习项目的构建以及优化。机器学习模型,尤其是深度学习模型,近年来变得越来越复杂。在单台机器上训练这些模型,特别是大语言模型(LLM),可能会非常低效,甚至由于单个设备计算资源和内存容量的限制而无法实现。亚马逊云科技解决方案架构师,负责企业级客户的架构咨询及设计优化,同时致力于Amazon Web Services IoT和存储服务在国内和全球企业客户的应用和推广。
2025-08-21 11:12:20
156
原创 在 Amazon Bedrock 中结合 RAG 与 MCP 高效缓解提示词膨胀问题
RAG-MCP 架构将工具描述存储在向量数据库中,利用语义检索动态选择最相关的工具,从而大幅减少提示词长度,提升推理效率和工具调用的精准性。自定义 Chunking,使用 Lambda 进行切分,并将切分块进行保存,在下面的代码中,我们通过获取 Tools 列表,并将所有的 Tools 保存成一个 jsonl 文件,每个 tool 一行,这样我们会在 Lambda 中根据换行符进行切分,每一个 Tool 作为一个 Chunk。将用户查询通过嵌入模型转换为向量,在向量数据库中检索最相关的工具描述。
2025-08-21 10:20:04
816
转载 SageMaker+P6e-GB200 UltraServers,万亿参数AI模型部署不在话下
NVIDIA Dynamo将计算密集型的预填充阶段和内存密集型的解码阶段分配到不同的GPU上,支持在由72块GPU构成的大型NVLink域内,对这两个阶段进行独立优化和资源分配,从而有助于更高效地管理大规模上下文窗口和高并发应用。即便面对超大规模模型,其强大的互连带宽也能确保以高度并行且高效的方式完成模型划分与训练,避免了传统多节点系统中因架构割裂导致的性能瓶颈,从而有助于缩短模型迭代周期,提升AI模型质量,助力各组织突破前沿AI研究与创新边界。亚马逊云科技高级人工智能与机器学习专家级解决方案架构师。
2025-08-20 11:05:03
141
转载 AgentCore Runtime:四行代码即可安全启动与扩展Agent
与此同时,他们还需应对Serverless计算架构的固有局限,例如执行超时限制(通常仅数十分钟)、负载容量限制,以及长时间计算任务面临的冷启动性能损耗等问题,这些繁重的技术负担严重分散了开发团队对核心功能开发的专注度。尽管这种同步流式Agent是向用户提供Agent聊天应用的常见方式,但当任务或工具仍在运行时,用户无法与Agent交互,无法查看后台操作状态,无法取消正在执行的任务,也无法在已有任务未完成时启动其他并发任务。首先,每个运行时实例均关联唯一的工作负载身份,其可视为Agent的专属身份标识。
2025-08-19 11:02:37
279
如何在亚马逊云科技云服务上构建千万级用户应用
2015-09-22
方国伟:基于亚马逊云科技的云灾备设计
2014-05-29
Netflix在亚马逊云科技上的应用和创新
2014-05-29
360度解析亚马逊云科技存储服务V2
2015-09-22
基于亚马逊云科技云服务的高可用应用设计 v1.0
2014-05-29
亚马逊云科技云服务入门介绍_方国伟
2014-05-29
方国伟:亚马逊云科技云服务的发展和创新
2014-05-29
亚马逊云科技的互联网存储服务
2015-09-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人