- 博客(2243)
- 资源 (9)
- 收藏
- 关注

原创 企业DevOps探讨:“谁构建、谁运行”原则的理论基础
“谁构建,谁运行” --沃纳·沃格尔这样的场景大家想必不会陌生:我们正与家人共度美好时光,突然刺耳的电话铃声嗡嗡响起,我们的注意力也为之吸引。听筒中的尖叫声告知,我们的应用程序——也就是那些定期受到内存泄漏侵扰、但重启之后又能恢复正常的小冤家们——现在终于彻底起义了,服务器资源在几分钟之内就被其彻底榨干。目前该应用已经无法正常起效,而运维团队除了尝试重启与回滚之外无法可想——而最新
2015-12-30 15:18:26
9542

原创 企业DevOps:实施过程中需要关注的各项要点
作者:亚马逊云科技企业市场战略总监Stephen Orban“经验并非凭空创造,而是依靠点滴积累所实现” ---阿尔贝·加缪在此次的企业DevOps探索之旅系列文章当中,我将带大家一同探讨企业在具备一定DevOps经验之后又该如何处理下一步可能面临的状况。当然,这些只是我个人在接触自动化、面向客户服务之IT体系以及“谁构建、谁运行”方面事务的同时积累下的一些心得体
2015-12-29 19:36:50
8153

翻译 将DevOps纳入企业环境引发的思考
作者:亚马逊云科技企业市场战略总监Stephen Orban“发展是一种以渐进式改善为载体的持续性行为”——英德拉瓦蒂虽然DevOps可以算是相对新鲜的概念,不过在我看来、其本质思路很早之前就已经出现。从这个角度看,目前很多企业已经广泛接纳这一概念并将其作为文化性产物看待,具体而言就是将大量原本孤立的团队融合起来,从而实现速度更快、频率更高且更为可靠的工作成果。我个人非常幸运
2015-10-13 17:38:41
6429

翻译 利用Amazon Machine Learning与Amazon Redshift建立二进制分类模型
日常生活中的大部分决策都以二进制形式存在,具体来说就是这类问题能够以是或者否来回答。而在商业活动中,能够以二进制方式回答的问题也有很多。举例来说:“这种情况是否属于交易欺诈?”,“这位客户是否会购买该产品?”或者“这位用户是否存在流失风险?”等等。在机器学习机制中,我们将此称为二进制分类问题。很多商业决策都能够通过准确预测二进制问题的答案来得到强化。Amazon Michine Learning(
2015-09-07 17:10:46
8344

翻译 利用Amazon Mobile Analytics与R深入探究移动应用的使用模式
作者:Sandeep Atluri 亚马逊数据科学家要真正鼓励用户使用我们的移动应用程序,最重要的前提就是深入了解用户使用应用程序时的行为模式,而后据此作出体验优化。不过通过应用程序事件数据来找出有意义的模式往往极具挑战性,而标准KPI所提供的诸如月度活跃用户(简称MAU)以及每日活跃用户(简称DAU)并不足以勾勒出完整的图景。举例来说,所发布应用在过去三十天中的用户开启次数能够帮
2015-08-31 18:33:41
6868

翻译 亚马逊云科技使用心得:当初我曾错过的那些宝贵经验
在今天的文章中,我整理出了大量当初曾经错过、而至今仍将我追悔莫及的亚马逊云科技(Amazon Web Services)使用心得。在几年来的实践当中,我通过在亚马逊云科技之上新手构建及部署各类应用程序而积累到了这些经验。虽然内容有些杂乱,但相信仍然能给各位带来一点启示。从物理服务器向“云环境”转移的过程不仅仅是一项技术任务,同时也意味着我们的思维方式需要作出针对性的转变。总体而言,在物理环境下我们
2015-07-08 22:52:17
28901
转载 搜索不准劝退用户?泰森食品用Bedrock构建更懂你的AI助手破局!
下图展示了该生成式AI助手的高层架构。传统的网络分析工具往往只是通过页面浏览量、点击量和网站停留时长等指标,来追踪用户行为,本方案则分析用户与AI助手自然交互所产生的海量对话数据,从而更深入更透彻地理解客户的兴趣和需求,使泰森食品公司能够前所未有地清晰洞察客户的兴趣倾向、痛点问题以及购买意向。在用户与系统交互的过程中,每当用户提出需要详细的产品信息、咨询特定产品类别、探索烹饪方法或食谱创意、查找所在地区的经销商信息,或是表示出对批量采购或促销活动的兴趣时,系统都会识别并记录这些具有高价值属性的交互行为。
2025-08-28 12:11:18
2
原创 快时尚电商行业智能体设计思路与应用实践(三)借助 Transcribe/Polly 打造新一代智能语音客服,实现媲美人工客服的对话体验
原型示例的场景设定为快时尚电商行业的智能语音客服。借助 Transcribe/Polly,对本系列的第二篇博客的 LangChain+MCP 实现的智能客服系统进行 S2S 功能延展,实现高度拟人的语音交互体验。原型示例展示了 ASR/LLM/TTS 的全过程,包括智能语音录制、动态结束检测、音频播放打断机制、客户服务处理逻辑以及跨平台兼容性处理,可以在 MacOS,Windows 和 Linux 上运行。
2025-08-28 08:55:47
647
转载 从「氛围编程」到「氛围工程」:Kiro让每个开发者秒变“百人团队”
Kiro提前帮您做好架构设计、代码规范、工具链集成,让您开发出的游戏不仅能玩,更符合企业级项目的标准,不再是简单的“玩具代码”。——1位只精通后端逻辑的工程师,无需学习复杂的图形或音频工具,就能独立完成高质量的多媒体模块开发,这极大拓宽了个人能力边界,让“全栈”变得更加名副其实。从项目规划开始,开发者通过Kiro Specs就能将模糊的业务需求转化为结构化的工程蓝图,下图就是把“想做个消消乐”的想法,拆解成清晰的需求、结构化的设计和可执行的任务。Kiro生成的标准化文档和任务,也让协作沟通的成本趋近于零。
2025-08-27 11:09:44
11
转载 香氛实验室:用Nova打造个性化体验,让产品与营销脱颖而出!
以进一步拓展Amazon Nova Pro的能力,使其不再局限于预训练阶段所掌握的知识范畴,而是能够访问丰富多样的相关知识来源,包括基本香气设计原则、对每种可用成分的深入理解、成分特性及其在香氛中可能发挥的作用,还有成分与用户气味特质之间潜在联系等。虽然在戛纳国际创意节上,亚马逊云科技香氛实验室聚焦于展示个性化香氛的研发,以及广告宣传活动的创意打造。该项目最初的开发愿景是融合实体与数字体验,打造出一种别具一格的体验形式,既能彰显创意、广告与消费品的魅力,又能捕捉法国里维埃拉地区的独特风情。
2025-08-26 13:20:09
19
原创 Amazon Q Developer CLI + 飞书——打造对话式的 AI Agent 智能运维平台
5、接受 IAM Identity Center的邀请:您需要登录到注册的邮箱,找到一封标题为“Invitation to join Amazon IAM Identity Center “的邮件,点击接受邀请(Accept invitation),使用刚刚在 IAM Identity Center 设置的 User name,重置密码后点击登录, 注意密码需要满足:8-64个字符,大写和小写字母,数字,非字母数字符。在现代云原生架构中,越来越多的组织采用微服务模式,系统由多个团队共同维护。
2025-08-26 09:25:17
442
转载 让AI对话更高效:Bedrock Converse API迁移指南
使用Amazon Bedrock,您可以轻松试验和评估适合您的使用案例的热门FM,通过微调和检索增强生成(RAG)等技术,利用您的数据对其进行私人定制,并构建使用您的企业系统和数据来源执行任务的Agent。,通过单个API,提供来自包括亚马逊云科技在内的领先人工智能公司的高性能基础模型(FM),并提供通过安全性、隐私性和负责任的AI构建生成式AI应用程序所需的一系列广泛功能。,每个FM的推理参数遵循模型提供商的定义,因此参数可能会根据您使用的FM而有所不同,从而提高了业务代码维护的难度。
2025-08-25 12:13:10
32
转载 AgentCore Gateway:重塑企业级AI Agents工具开发格局
对于复杂的数据结构,需包含详细的字段说明、验证规则和示例,同时保持全文术语的一致性。同时,为实现最佳的工具发现效果,应在描述中自然融入相关业务领域的关键词,并说明每个API的适用场景。是企业级AI Agents开发领域的一项重大突破,它为工具集成提供了全托管、安全且可扩展的解决方案,使企业能够在确保企业级安全与合规管控的前提下,加速推进AI项目落地。对于向目标API发起的出站OAuth身份验证,AgentCore Gateway支持2LO的客户端凭证授权模式,可在无需用户交互的情况下,实现安全的。
2025-08-22 11:03:42
67
转载 基于EKS,利用DeepSpeed玩转模型分布式训练
亚马逊云科技机器学习产品技术专家,负责基于亚马逊云科技的机器学习方案的咨询与设计,专注于机器学习的推广与应用,深度参与了诸多真实客户的机器学习项目的构建以及优化。机器学习模型,尤其是深度学习模型,近年来变得越来越复杂。在单台机器上训练这些模型,特别是大语言模型(LLM),可能会非常低效,甚至由于单个设备计算资源和内存容量的限制而无法实现。亚马逊云科技解决方案架构师,负责企业级客户的架构咨询及设计优化,同时致力于Amazon Web Services IoT和存储服务在国内和全球企业客户的应用和推广。
2025-08-21 11:12:20
69
原创 在 Amazon Bedrock 中结合 RAG 与 MCP 高效缓解提示词膨胀问题
RAG-MCP 架构将工具描述存储在向量数据库中,利用语义检索动态选择最相关的工具,从而大幅减少提示词长度,提升推理效率和工具调用的精准性。自定义 Chunking,使用 Lambda 进行切分,并将切分块进行保存,在下面的代码中,我们通过获取 Tools 列表,并将所有的 Tools 保存成一个 jsonl 文件,每个 tool 一行,这样我们会在 Lambda 中根据换行符进行切分,每一个 Tool 作为一个 Chunk。将用户查询通过嵌入模型转换为向量,在向量数据库中检索最相关的工具描述。
2025-08-21 10:20:04
710
转载 SageMaker+P6e-GB200 UltraServers,万亿参数AI模型部署不在话下
NVIDIA Dynamo将计算密集型的预填充阶段和内存密集型的解码阶段分配到不同的GPU上,支持在由72块GPU构成的大型NVLink域内,对这两个阶段进行独立优化和资源分配,从而有助于更高效地管理大规模上下文窗口和高并发应用。即便面对超大规模模型,其强大的互连带宽也能确保以高度并行且高效的方式完成模型划分与训练,避免了传统多节点系统中因架构割裂导致的性能瓶颈,从而有助于缩短模型迭代周期,提升AI模型质量,助力各组织突破前沿AI研究与创新边界。亚马逊云科技高级人工智能与机器学习专家级解决方案架构师。
2025-08-20 11:05:03
56
转载 AgentCore Runtime:四行代码即可安全启动与扩展Agent
与此同时,他们还需应对Serverless计算架构的固有局限,例如执行超时限制(通常仅数十分钟)、负载容量限制,以及长时间计算任务面临的冷启动性能损耗等问题,这些繁重的技术负担严重分散了开发团队对核心功能开发的专注度。尽管这种同步流式Agent是向用户提供Agent聊天应用的常见方式,但当任务或工具仍在运行时,用户无法与Agent交互,无法查看后台操作状态,无法取消正在执行的任务,也无法在已有任务未完成时启动其他并发任务。首先,每个运行时实例均关联唯一的工作负载身份,其可视为Agent的专属身份标识。
2025-08-19 11:02:37
97
原创 RAG-MCP 性能剖析:在 Amazon Bedrock 中多维度测试提示词优化的效果
架构洞察:这一案例展示了 RAG 方法的理想情况,知识库精确检索到了相关工具,同时显著减少了上下文大小,实现了”准确性与效率的双赢”。从认知负荷理论角度看,当模型面对较少的选项时,能够更聚焦于任务本身,减少了选择干扰。这些数据显示,RAG-MCP 在保持相同成功率的同时,显著降低了令牌使用量(67.0%),提高了准确率(7.2%),并减少了响应时间(26.7%)。精简原则的价值:RAG-MCP 验证了“最小特权原则”在 AI 系统中的适用性,通过仅提供必要工具,不仅提高了效率,还可能提升了准确性。
2025-08-19 09:04:14
1067
转载 自然对话纵享丝滑!Nova Sonic搭MCP构建语音交互应用
要实现MCP这种方式的工具调用,首先需要将函数或工具的描述信息schema输入给LLM,只不过Function Call是在本地生成函数描述的,而MCP则是远程从MCP Server中自动拉取的工具描述,远程MCP Server端有哪些工具的描述,是基于Server端工具在开发时用注解的方式描述函数名、用途和参数信息来自动生成的。通过与MCP等工具协议的结合,端到端语音模型可以直接解析用户的语音请求,并触发相应的车辆控制API或第三方服务调用(如调节空调、播放音乐、发送消息、查询附近餐厅等)。
2025-08-18 11:11:39
79
转载 多Agents协作指南二:用Strands Agents实现Swarm群体智能模式
这种实现之所以有效,是因为它全面覆盖了用户体验、技术和质量方面,建立了明确的交接点和具体交付物,通过多轮改进确保质量,并保持与真实产品团队产出相匹配的现实范围。代码首先使用了Strands框架的Agent类来创建Agent实例,这个Agent被设计为群体协调器,负责组织和管理其他Agent的协作过程。群体请求结构明确说明了开发目标,定义了每个Agent的5个具体职责,概述了带有2轮改进的精确工作流程,并列出了6个具体交付物以确保全面覆盖。这次Agent之间的交互复杂度,已经初具人类的团队协作雏形了。
2025-08-15 16:14:37
59
原创 Amazon Q Developer 结合 MCP 实现智能化云成本分析
展望未来,这种 AI 驱动的成本管理模式将成为企业云成本优化的重要工具,帮助企业更高效地进行云成本管理和优化。可以看到 Amazon Q Developer 在分析过程中首先调用 awslabcost_explorer_mcp_serve 相关工具进行数据收以及和上一个月的趋势对比,最后调用 awslabscost_analysis_mcp_server 的 generate_cost_report 工具生成了结构化的成本分析报告以及优化建议。遵循 MCP 协议的应用,可以调用各种工具,扩展 AI 能力。
2025-08-14 09:20:32
1065
转载 扩展5倍!Bedrock中的Claude Sonnet 4上下文窗口增至100万
方面 ,用户现可一次性加载整个代码库,包括源文件、测试文件和技术文档等,这使得Claude Sonnet 4模型能够全面理解项目架构、准确识别跨文件依赖关系,并基于完整的系统设计提出优化建议。如果您输入的提示词超过20万tokens,则输入部分的tokens价格将约为原价的两倍,输出部分则约为原价的1.5倍。这一更新使Claude能够在单次请求中,处理并分析更长篇幅的文本内容,为综合分析及文本生成任务开辟了新的可能性。,通过行业认可的认证验证您的AI/ML个人技能,为您的未来提供动力。
2025-08-13 16:09:13
68
转载 跨国企业如何解决云服务环境区域差异问题?文档MCP Server帮你搞定!
亚马逊云科技智能开发解决方案架构师,负责基于亚马逊云科技智能开发与应用现代化领域的方案咨询与架构设计,同时致力于亚马逊云科技云服务知识体系的传播与普及。,通过添加对亚马逊云科技中国区文档的支持,使跨国企业能够更准确地获取亚马逊云科技中国区的文档信息,从而更好地规划其中国业务。随着中国数字经济的快速发展和云计算业务的不断扩大,这类支持跨区域部署的工具将变得越来越重要,为全球企业进入中国业务。调用文档MCP Server提供的工具,先获取中国区可用服务的列表和文档链接,然后阅读对应的文档。
2025-08-13 12:52:10
73
转载 AgentCore Browser Tool:让AI接管浏览器,玩转网页自动化
通过提供全托管的云上浏览器,可满足企业在数千个并发会话中大规模部署AI自动化的关键需求,支持从客户服务自动化到大规模数据收集与分析等多种应用场景,同时避免了传统自行管理的浏览器自动化框架所固有的复杂性和资源限制问题。此外,随着企业寻求在各项业务中部署AI驱动的自动化流程,他们需要能够可扩展的解决方案,且无需承担管理浏览器集群或解决复杂并发问题所带来的运营开销。,使企业能够构建出真正智能的Agents系统,其不仅能理解专为人类设计的内容,还能与之实现自然交互,从而突破了以往仅依赖于API进行集成的局限性。
2025-08-12 11:02:34
111
原创 通过自动化工具实现亚马逊云上资源标签管理
我们开发的自动化标签管理解决方案为企业提供了强大而灵活的工具,该解决方案适用于多种场景,包括云迁移项目、成本分配优化等,还可以配合数据库或者文件存储做标签分类,可为企业带来显著的运维效率提升和治理能力增强。然而,在实际实施过程中,标签管理往往面临诸多挑战:手动操作的低效性,在亚马逊云科技控制台中逐一添加标签不仅耗时,还易出错;它利用 Amazon Resource Groups Tagging API 执行标签操作,同时生成详细的执行报告,包括成功、失败和跳过操作的统计信息,确保标签应用过程可追踪。
2025-08-12 08:56:27
644
转载 一招优化呼叫中心导航场景:利用Nova实现关键词匹配
另外对于处理多语言任务,在传统的基于文字的客服场景中,经常使用一套英文prompt来应对主流语言的场景,截稿到目前为止的测试下,亦可以采用本方法,并且通过如下的系统提示词设定能够一定程度改善。生成对应语音的文本,最后进行汇总,即利用了ASR的语音或语音关联性导致的转录“差异”,完成了原始关键词词库的扩词,同时利用该扩词集合还可以作为后续的测试集。对于上述难点,尤其是ASR语音转文本准确性方面,在传统方案中,通常会让客户提供,或者基于算法生成对应短语或关键词的多个变体表达(发音)方式,如下所示。
2025-08-11 11:36:14
77
转载 Bedrock Guardrails自动推理检查功能正式上线!验证准确率可达99%
然后,设定自动推理检查的预期结果,预期结果可以是“有效”(答案正确)、“无效”(答案不正确)或“可满足”(根据特定假设,答案可能为真或假)。为实现这一任务,关键是要确保AI系统的预测结果不得偏离既定的房贷审批规则和指引,这些规则和指引会以自然语言的形式记录在一份策略文件中。您可查看每一项测试的相关结果。要知道,在这些领域,信任并非是可有可无的附加项,而是必不可少的核心要素。从下拉菜单中选择“测试”,在此可以手动输入一个测试用例,该用例包含输入(可选)和输出,例如客户与AI助手交互时提出的问题及可能的答案。
2025-08-08 11:20:59
103
原创 基于 Amazon Q Developer CLI 进行智能混沌工程实验
混沌工程 Chaos Engineering 是在大规模分布式系统上进行受控实验,观察系统行为并发现系统弱点,以建立应对意外风险引发混乱的能力和信心。在现代云原生架构中,系统的复杂性和分布式特性使得传统的测试方法难以全面验证系统的韧性。混沌工程作为一种主动发现系统弱点的方法论,已经成为构建可靠系统的重要实践。然而,传统的混沌工程实施过程往往需要大量的人工干预,从定义稳态假设到设计实验模板,再到分析实验结果,都需要依赖架构师具备深厚的专业知识和丰富的经验。
2025-08-07 13:24:56
849
转载 AgentCore Code Interpreter:AI Agents开发的变革性力量!
此外,实现代码解释功能时,有诸多重要因素需要考虑:组织必须构建安全的沙盒环境,以防止恶意代码执行,同时要管理好资源分配,避免资源的浪费或不足,并切实维护好数据隐私。,集成了隔离的沙箱环境、企业级安全控制机制,同时还能无缝集成各类开发框架,帮助开发团队将精力集中在Agent的核心逻辑设计和业务价值创造上,而无需为繁琐复杂的基础设施问题费心费力。在整个工作流程中,系统会详细记录Agent的执行情况,形成完整的执行轨迹,方便用户清晰了解Agent行为、性能指标和运行日志等信息,以供后续的调试和审计使用。
2025-08-07 11:01:49
99
转载 OpenAI开放权重模型已上线,超详细部署指南!
5.选择对应的模型卡片,查看该模型的详细信息,包括许可证、训练所用数据以及模型使用方法等。在部署模型之前,请根据模型卡片上的信息,仔细审查配置和模型详情。这些模型将部署在安全的亚马逊云科技环境中,并完全处于您所管理的VPC的管控之下,有助于满足企业对数据安全的需求。以下代码详细说明了如何在禁用网络隔离的情况下,在Amazon SageMaker上部署模型,并将EXA API key传递给模型。部署完成后,您可以使用。在上述部署过程中,由于网络隔离是在部署时设置的,若要重新启用它,则需要创建一个新的端点。
2025-08-06 12:39:04
124
原创 零代码生成 3D 游戏:基于 Amazon Q Developer CLI 和 Three.js 的实践
创建一个赛车的小游戏,放到这个路径 /Users/valyli/three-js-demo-2 . 创建之前,先做规划,确定创建的步骤.把这个计划写入一个markdown文档.后续创建过程中,每一个步骤都重新与这个计划文档进行核对,并标注完成的状态.通过这个方法来确保创建过程的质量,保证最终输出的游戏工程可以正确运行.在这个版本中,最重要的是做出这个小游戏,能够正常演示.并不需要复杂的玩法和功能.它们通常使用的是自己游戏的美术设计,例如:角色的 3D 模型、卡通界面、技能特效等。
2025-08-05 09:06:25
597
转载 多Agents协作指南一:用Strands Agents实现Agent as Tools模式
考取AWS AI Certification,通过行业认可的认证验证您的AI/ML个人技能,为您的未来提供动力。传统的单Agent尝试处理所有任务,常在专门领域表现平平。而“Agent as Tools”协作模式将专业工作分配给由管理者协调的专用Agent,每个专家Agent在其特定领域发挥专长,的Agent协作模式,与擅长不同任务处理的专家Agent一起,协调处理用户查询并提供全面分析的Agent系统架构图示。使用以下代码创建管理者Agent,管理者Agent统筹整个系统,协调三个专家Agent。
2025-08-04 11:03:20
123
转载 又快又准!Q CLI+MCP自动化混沌工程实验
更重要的是,它具备上下文感知能力,能够记住之前的对话和实验历史,提供连贯的交互体验。然而,传统的混沌工程实施过程往往需要大量的人工干预,从定义稳态假设到设计实验模板,再到分析实验结果,都需要依赖架构师具备深厚的专业知识和丰富的经验。,通过自然语言交互的方式,让原本需要深厚专业知识的混沌工程变得人人可用,即使是初学者也能通过简单的对话来设计和执行复杂的故障注入实验。能够从中获得价值,通过量化的实验结果和风险评估报告,可以更好地理解系统的风险状况,制定更加合理的技术投资和风险管控策略。
2025-08-01 11:03:07
100
转载 Strands Agents 1.0上线,多Agents协作落地生产更简单
系统会为每个Agent分配一个用于追踪的唯一标识符,并能在同一会话中处理多个并发运行的Agent,以应对多Agents场景,确保Agent在部署、扩容事件以及系统重启等情况下,能够始终保持上下文连贯性。模式将具备专业能力的Agent,转化为可供其他Agent调用的智能工具,支持分层委托机制:作为协调者的Agent可在动态咨询领域专家Agent的同时,始终掌控请求处理的主导权。工具,任务可借此工具无缝转移控制权,并保持对话历史与上下文信息的连贯性,如同客服代表向客户询问更多信息细节时的场景。
2025-07-31 12:11:58
108
原创 基于 Amazon Nova 实现优化呼叫中心导航场景
在本文中,我们会首先基于一个模拟的原始导航关键词词库,通过 Amazon Polly 基于不同口音(美国英语,印度英语等)生成对应的录音文件,然后通过 Amazon Transcribe 生成对应语音的文本,最后进行汇总,即利用了 ASR 的语音/语音关联性导致的转录”差异”,完成了原始关键词词库的扩词,同时利用该扩词集合还可以作为后续的测试集。从测试结果看,Amazon Nova 对于语言语音的理解有较强的能力,结合其较高的性价比,在与本文类似的场景中可以进行尝试。
2025-07-31 11:12:22
934
转载 用DPO定制Nova模型攻略!适配个性化应用场景需求
定制后的模型可部署到Amazon Bedrock上,利用预置吞吐量进行推理。通过大量此类示例的训练,Amazon Nova模型不仅学会生成正确的函数调用语法,还能在复杂工作流中就何时以及如何调用工具做出细致入微的决策,从而提升其在客户支持自动化、工作流编排和智能数字助手等业务应用中的实用性。如下图所示,采用DPO技术,根据给定的用户查询和可用工具操作,向Amazon Nova模型展示成对的回复(其中一对回复中,一个更受人工标注员青睐,另一个则相对不受青睐),以此让模型契合人类偏好。
2025-07-30 12:36:40
127
转载 告别千篇一律跟团游!Bedrock帮助旅行社打造私人定制旅行,省心又自由
采用这种分层架构,旅行Agent能够收集客户需求,结合存储的客户偏好信息完善客户需求,并整合实时数据,从而提供符合客户需求的个性化推荐旅行方案。而这款基于生成式AI驱动的解决方案,巧妙地将个性化定制与实时数据集成相结合,使旅行社能够自动将客户的无障碍需求,与现有的旅行选择进行智能匹配,无论是升级旅行规划系统,还是应对复杂的客户需求,该解决方案都提供了一个切实可行的起点,并可根据具体业务需求提供明确的优化路径。该函数将查询知识库,利用模拟API获取实时航班信息,并生成符合客户特定需求和偏好的个性化推荐方案。
2025-07-29 12:23:55
130
转载 仅凭MSK迁移,FunPlus竟将运营成本降低50%?
亚马逊云科技解决方案架构师,负责基于亚马逊云科技云计算方案的咨询、架构设计及落地,拥有多年移动互联网研发经验,在云原生微服务以及云迁移等方向有丰富的实践经验。亚马逊云科技客户解决方案经理,在亚马逊云科技主要支持游戏和零售等行业的用户。FunPlus大数据架构师,在互联网与游戏行业从业14年,负责FunPlus整体大数据基建的云上架构设计和实施工作,具有丰富的实践经验。FunPlus运维负责人,在游戏行业从业15年,负责FunPlus整体业务的云上架构设计和实施工作,具有丰富的实践经验。
2025-07-29 12:23:55
112
原创 Amazon Bedrock Runtime API 集成指南——从 Invoke Model API 迁移到 Converse API,简化生成式 AI 应用开发
因此,我们建议您在满足业务要求的情况下迁移到 Converse API。2024 年 5 月,Amazon Bedrock 宣布了新的 Converse API,为开发者提供了一种统一的调用 Amazon Bedrock 模型的方式,消除了因模型特定差异(如推理参数差异)而带来的复杂度。2024 年 5 月,Amazon Bedrock 宣布了新的 Converse API,为开发者提供了一种统一的调用 Amazon Bedrock 模型的方式,消除了因模型特定差异(如推理参数)而带来的复杂度。
2025-07-29 10:01:29
762
转载 Q CLI+Jenkins秒变智检员,代码靠得住,开发更快速
Amazon Q Developer是亚马逊云科技推出的AI驱动代码助手,能够智能分析代码,识别潜在问题,并提供改进建议。Jenkins作为广受欢迎的开源自动化服务器,凭借其强大的插件生态系统和灵活的配置能力,已成为CI/CD流程的核心工具,能够自动执行构建、测试和部署等任务,与各种开发工具无缝集成。亚马逊云科技解决方案架构师,负责云计算解决方案的咨询和设计,具有丰富的解决客户实际问题的经验。亚马逊云科技解决方案架构师,专注于各行业的生成式AI解决方案的架构咨询和设计,具有丰富的云计算实践经验。
2025-07-28 11:01:33
94
如何在亚马逊云科技云服务上构建千万级用户应用
2015-09-22
方国伟:基于亚马逊云科技的云灾备设计
2014-05-29
Netflix在亚马逊云科技上的应用和创新
2014-05-29
360度解析亚马逊云科技存储服务V2
2015-09-22
基于亚马逊云科技云服务的高可用应用设计 v1.0
2014-05-29
亚马逊云科技云服务入门介绍_方国伟
2014-05-29
方国伟:亚马逊云科技云服务的发展和创新
2014-05-29
亚马逊云科技的互联网存储服务
2015-09-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人