• 博客(2392)
  • 资源 (9)
  • 收藏
  • 关注

原创 企业DevOps探讨:“谁构建、谁运行”原则的理论基础

“谁构建,谁运行” --沃纳·沃格尔这样的场景大家想必不会陌生:我们正与家人共度美好时光,突然刺耳的电话铃声嗡嗡响起,我们的注意力也为之吸引。听筒中的尖叫声告知,我们的应用程序——也就是那些定期受到内存泄漏侵扰、但重启之后又能恢复正常的小冤家们——现在终于彻底起义了,服务器资源在几分钟之内就被其彻底榨干。目前该应用已经无法正常起效,而运维团队除了尝试重启与回滚之外无法可想——而最新

2015-12-30 15:18:26 9711

原创 企业DevOps:实施过程中需要关注的各项要点

作者:亚马逊云科技企业市场战略总监Stephen Orban“经验并非凭空创造,而是依靠点滴积累所实现” ---阿尔贝·加缪在此次的企业DevOps探索之旅系列文章当中,我将带大家一同探讨企业在具备一定DevOps经验之后又该如何处理下一步可能面临的状况。当然,这些只是我个人在接触自动化、面向客户服务之IT体系以及“谁构建、谁运行”方面事务的同时积累下的一些心得体

2015-12-29 19:36:50 8315

翻译 将DevOps纳入企业环境引发的思考

作者:亚马逊云科技企业市场战略总监Stephen Orban“发展是一种以渐进式改善为载体的持续性行为”——英德拉瓦蒂虽然DevOps可以算是相对新鲜的概念,不过在我看来、其本质思路很早之前就已经出现。从这个角度看,目前很多企业已经广泛接纳这一概念并将其作为文化性产物看待,具体而言就是将大量原本孤立的团队融合起来,从而实现速度更快、频率更高且更为可靠的工作成果。我个人非常幸运

2015-10-13 17:38:41 6588

翻译 利用Amazon Machine Learning与Amazon Redshift建立二进制分类模型

日常生活中的大部分决策都以二进制形式存在,具体来说就是这类问题能够以是或者否来回答。而在商业活动中,能够以二进制方式回答的问题也有很多。举例来说:“这种情况是否属于交易欺诈?”,“这位客户是否会购买该产品?”或者“这位用户是否存在流失风险?”等等。在机器学习机制中,我们将此称为二进制分类问题。很多商业决策都能够通过准确预测二进制问题的答案来得到强化。Amazon Michine Learning(

2015-09-07 17:10:46 8503

翻译 利用Amazon Mobile Analytics与R深入探究移动应用的使用模式

作者:Sandeep Atluri 亚马逊数据科学家要真正鼓励用户使用我们的移动应用程序,最重要的前提就是深入了解用户使用应用程序时的行为模式,而后据此作出体验优化。不过通过应用程序事件数据来找出有意义的模式往往极具挑战性,而标准KPI所提供的诸如月度活跃用户(简称MAU)以及每日活跃用户(简称DAU)并不足以勾勒出完整的图景。举例来说,所发布应用在过去三十天中的用户开启次数能够帮

2015-08-31 18:33:41 7020

翻译 亚马逊云科技使用心得:当初我曾错过的那些宝贵经验

在今天的文章中,我整理出了大量当初曾经错过、而至今仍将我追悔莫及的亚马逊云科技(Amazon Web Services)使用心得。在几年来的实践当中,我通过在亚马逊云科技之上新手构建及部署各类应用程序而积累到了这些经验。虽然内容有些杂乱,但相信仍然能给各位带来一点启示。从物理服务器向“云环境”转移的过程不仅仅是一项技术任务,同时也意味着我们的思维方式需要作出针对性的转变。总体而言,在物理环境下我们

2015-07-08 22:52:17 29091

转载 搜索成本直降34%!阿尔特携手Bedrock AgentCore打造懂你的电商AI

其以Strands Agents能力为“骨架”,以AgentCore Memory的记忆功能为“大脑”,搭配大小模型协同、语义共识引擎等技术,找到了当前电商AI搜索的最优实现路径,体现对AI技术本质的深刻理解与实践智慧。深度融合AgentCore Memory的用户数据,摒弃传统机械的推荐方式,采用拟人化导购的交互形式,进行情感化推荐排序,让推荐结果更贴合用户个性化需求与购物习惯。如今,用户无需在重复搜索中反复描述需求,AI能够精准理解需求的上下文演进过程,为用户提供具备连续性的个性化服务体验。

2025-12-31 11:15:46 9

原创 快时尚电商行业智能体设计思路与应用实践(六)实现智能体极速研发

本文介绍了Amazon Bedrock Agent Core MCP Server在快时尚电商智能客服系统开发中的应用。该工具通过实时文档查询、动态配置管理和部署指导,显著提升了开发效率,使传统"查文档+试错"模式转变为"自动提示+即时验证"的工程体验。文章详细展示了从环境配置、智能体构建到系统部署的全流程,包括SOP定义、Memory管理实现和本地测试方法。

2025-12-31 10:21:58 574

原创 使用 Kiro AI IDE 开发 基于Amazon EMR 的Flink 智能监控系统实践

效率提升:开发效率提升 6-8 倍质量提升:代码规范性 100%,测试覆盖率 85%学习加速:通过 AI 生成的代码学习新技术决策辅助:AI 帮助做出正确的技术选型核心亮点Spec驱动开发:结构化需求描述,逐步实现MCP集成:扩展 AI 能力,查询文档和操作亚马逊云科技服务Steering规则:确保代码符合项目规范迭代优化:逐步完善,而非一次完美参考资源项目地址Kiro 官网前述特定亚马逊云科技生成式人工智能相关的服务目前在亚马逊云科技海外区域可用。

2025-12-31 09:00:00 1159

原创 使用 Kiro AI IDE 开发 Amazon CDK 部署架构:从模糊需求到三层堆栈的协作实战

Amazon Cloud Development Kit (CDK) 是使用编程语言定义云基础设施的框架: – 使用 Python、TypeScript 等语言,而非 JSON/YAML – 代码复用和模块化 – IDE 支持(代码补全、类型检查) – 通过 Amazon CloudFormation 部署Kiro是亚马逊云科技推出的 AI 辅助开发工具: – 理解自然语言需求,生成 CDK 代码 – 基于 Spec 文档驱动开发 – 理解亚马逊云科技服务依赖关系 – 通过对话迭代优化架构设计效率提升。

2025-12-30 15:01:55 938

转载 只需说句话,Nova Sonic帮你管理待办事项!

他拥有超过19年的企业应用架构与开发经验,凭借在生成式AI技术领域的专业能力,助力客户优化业务运营,突破现有技术瓶颈。这有助于打造一个效率倍增的全新应用环境,其中交互不再依赖传统的界面元素,而是以具体的上下文信息作为交互的核心依据。语音技术不仅能催生全新的交互模式,还能为屏幕阅读器等辅助技术使用者提供一种更加包容、多元的交互途径,让这些用户也能顺畅地与应用程序进行互动。每一条指令背后,都对应着一系列精准的操作,例如新建笔记、整理内容或更新任务状态等,这些操作均通过语音指令完成,整个过程自然流畅、高效便捷。

2025-12-30 11:12:07 15

原创 使用Amazon Nova模型实现自动化视频高光剪辑

本文介绍了基于Amazon Nova多模态模型(VLM和MME)的视频高光剪辑自动化方案。方案包含两种核心方法:1) 纯VLM方案直接通过Nova模型理解视频内容并输出高光时间戳;2) VLM+MME方案结合语义摘要与嵌入检索实现更精准的片段定位。文章详细阐述了各方案的架构设计、提示词工程技巧及效果优化策略,包括视频切片、语义匹配等关键技术。此外还介绍了成本优化思路和附加效果处理,如BGM匹配、转场动画等。最后提供了方案选型建议和应用场景分析,展示了该技术在体育赛事、媒体内容等领域的应用潜力。

2025-12-29 23:44:42 610 1

转载 4步构建生物医学研究Agent!AgentCore Gateway解放你的双手

如今,在基因组学、蛋白质组学、病理学等多个领域,海量专业数据库和分析工具正以前所未有的速度涌现,要求研究人员必须持续跟进这些工具的发展动态,不断学习掌握新工具,这导致他们用于开展假设驱动型研究的时间大幅减少,而这类研究又恰恰是推动重大突破性发现的关键所在。部署完成后,AgentCore Runtime将成为可弹性扩展的Serverless Agent,用户可通过API调用触发该Agent,它会自动处理会话管理、持久存储记忆及工具编排,同时提供对Biomni网关与本地研究工具的安全访问能力。

2025-12-29 11:40:42 33

原创 如何在亚马逊云科技部署高可用MaxKB知识库应用

本文介绍了基于亚马逊云科技托管服务构建高可用MaxKB知识库系统的方案。MaxKB作为开源RAG问答系统,支持多模型对接和智能问答场景。针对企业生产环境需求,方案采用Amazon ECS运行容器化应用,配合RDS PostgreSQL(含pgvector扩展)和ElastiCache Valkey提供数据持久化与缓存,通过ALB实现流量分发和多可用区部署,确保99.9%以上的服务可用性。文章详细阐述了架构设计、服务配置和CDK自动化部署流程,并展示了对接Bedrock模型的实际应用效果。

2025-12-26 20:57:24 804

转载 CANoe上云方案:打造企业级ECU云端流水线,效率、质量、成本三重提升!

这些变化让传统的基于电脑的本地工具模式逐渐捉襟见肘:构建慢、环境不一致、测试分散、资源浪费、跨团队协作困难。“免费计划”账户类型,确保零花费,安心试用。进入云端后,它们不再是“本地打开的软件”,而成为随时可调用的云端“能力节点”。不仅能把原本碎片化的研发流程自动化,还能将ECU软件生产线变成真正的“工程化系统”,可扩展、可复用、可治理。工具上云不是简单提供“云电脑”,而是提供一整套让汽车工具成为“可调用的自动化服务”的平台。等能力使工具部署在内部隔离网络中,授权分发可控,日志可审计,满足车企的合规要求。

2025-12-26 11:31:14 48

原创 使用Graviton机型推理LLM模型实践指南

本文介绍了在企业AI应用中,Amazon Graviton处理器与Qwen3 0.6B轻量级模型的组合方案。该方案针对工单分类、情感分析等高频简单任务场景,通过测试显示:Graviton实例相比同配置Intel实例,推理速度提升42%,成本降低31%,延迟减少23%。文章详细阐述了部署方法,包括使用SageMaker和Ollama构建ARM架构容器镜像,并分析了该方案在性能与成本上的优势。特别指出Graviton4实例的显著性能提升,为轻量级AI任务提供了高性价比的CPU推理方案选择。

2025-12-25 15:24:19 568

转载 Agentic AI实践指南|秘籍八:Agent应用隐私与安全

该分类梳理的方法,重点分析单个Agent级别的威胁,包括内存中毒、工具滥用和权限泄露。这种现状导致了MCP相关的安全问题,MCP在追求互操作性的同时,往往会忽视基础的安全实践,导致了严重的安全的风险。为了应对上述安全隐患,企业可以采用多层防护策略,在每次的用户输入、大模型的规划、记忆数据存储、工具描述和响应内容、Agent最终给用户的响应、跨Agent之间的消息传递等,各个环节都独立调用Amazon Bedrock Guardrails进行过滤,特别是提示词注入攻击的过滤,可以有效缓解注入攻击的风险。

2025-12-25 11:18:11 29

转载 Agentic AI实践指南|秘籍七:Agent可观测性评估

示例环境可根据workshop进行创建,创建资源包括一个含有订单数据表格并通过api gateway对外暴露的电商系统,和一个通过网页交互的电商售后智能客服应用,智能客服Agent应用通过添加多个MCP servers,其中包括调用电商系统的API Gateway接口的工具,来实现对电商系统中的订单进行查询并按照售后流程定义规则进行处理的功能。除了MLFlow之外,也可使用其他可观测性系统,例如Langfuse是一个专为LLM应用设计的开源可观测性系统,提供了完整的追踪、评估和分析能力。

2025-12-24 11:08:45 43

原创 让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践

本文介绍了如何将博查搜索(Bocha)集成到Amazon QuickSuite智能工作平台中,解决企业AI助手面临的信息孤岛问题。通过Amazon Bedrock Agent Core Gateway作为统一工具服务器,采用模块化架构实现快速集成,使QuickSuite用户能直接在ChatAgent界面获取实时网络搜索能力。

2025-12-23 22:09:49 606

转载 Agentic AI实践指南|秘籍六:Agent质量评估

使用LLM来评估Agent输出质量的方法,通过让LLM扮演“评判者”角色,根据预定义的评估标准对Agent的表现进行打分和判断:Agent从收到用户第一条请求到任务完全完成(数据库状态更新到目标)所用的平均时间,衡量效率和用户体验。,模拟一个面向天气查询的智能助手工作和Agent评估流程,通过SummaryLogger来观测和跟踪评估的中间结果以及对应的关键指标,方便进行后续的人工复查,同时通过测试可以评估任务整体的执行效率和准确性,并在完成的最后使用评估指标分析对失败任务进行归因分析。

2025-12-23 11:08:21 65

原创 基于Amazon Q Developer实现IoT设备的Amazon Timestream性能与成本优化

本文分享了如何利用Amazon Q Developer的AI能力优化Amazon Timestream时序数据库性能的实践案例。针对某制造业企业面临的大规模IoT设备数据处理挑战,通过AI驱动的诊断工具精准定位性能瓶颈。

2025-12-22 15:24:11 605

转载 Agentic AI实践指南|秘籍五:Agent身份认证与授权管理

但应用系统中引入Agentic AI技术后,数据的查询和第三方系统的调用等,会由AI Agent来完成,因为当前登录的用户要查询或操作的内容可能不是对其自身的查询或操作,有可能是通过prompt的方式查询或操作其他用户的信息,这一点是与传统应用的最大区别。应用程序充当Agent,将用户的身份验证请求转发到Agent基础架构,同时维护用户的身份上下文。对于身份欺骗和冒充威胁,在一个典型的Agentic AI逻辑架构中,需要进行身份认证与授权的交互点非常多、且涉及到非一方自研的部分,导致风险点的控制变得复杂。

2025-12-22 11:58:29 44

原创 使用Amazon Q Developer CLI快速构建市场分析智能体

Amazon Q Developer CLI是亚马逊云科技推出的AI命令行开发工具,支持多Agent架构,通过自然语言交互实现代码生成、测试、审查等功能。该工具深度集成云服务和本地系统,适配Linux/macOS环境,可显著提升开发效率。解决方案结合安畅AI Search实现智能搜索增强,并通过飞书集成提供企业级协作入口。其优势在于:专业分工的多Agent处理、高并发支持、智能语义检索、无缝协作集成,以及安全稳定的扩展能力,适用于复杂市场分析和营销策略场景。

2025-12-19 20:53:40 637

转载 Agentic AI实践指南|秘籍四:部署MCP服务器

详细内容,敬请参阅文章。以Claude提供的示例Git MCP Server为例,客户端通过MCP协议向MCP Server发起操作Git存储库的请求,Git MCP Server利用内置的Git SDK对存储库进行操作后,以MCP协议向客户端返回操作结果。AI Agent只需要支持MCP协议,不需要关心工具的更新和变化,也不再需要学习和适配各种不同的API格式,所有的工具调用都通过统一的MCP协议进行,使用相同的数据格式和通信方式,这大大简化了开发者使用多种工具的集成复杂度,让大量工具的集成变得可行。

2025-12-19 11:05:51 97

原创 Kiro小应用开发:设计和实现隐私号码

本文介绍了使用亚马逊云科技Kiro开发虚拟号码应用的完整过程。作者通过SPEC模式,让Kiro从需求分析、方案设计到代码开发、部署全流程自主完成。Kiro设计了基于Amazon Connect、Lambda、DynamoDB等Serverless服务的解决方案,具备通话转接、短号管理等功能。开发过程中,Kiro自动处理了权限、资源冲突等问题,并通过Steering文档保持上下文一致性。相比传统开发,Kiro的方案更完整易用,展现了AI在需求分解、架构设计等环节的潜力,但也存在上下文管理、专业配置等挑战。

2025-12-18 14:32:55 956

转载 Agentic AI实践指南|秘籍三:构建Agent记忆模块

捕捉Agent的交互经历,不仅存储对话内容,还包含完整上下文和推理过程,作为短期记忆主要用于构建用户提示词,使Agent能够从过往经验中学习,参考成功案例调整响应策略,从而在类似情境中提供更加个性化和有效的解决方案。

2025-12-18 11:06:30 54

转载 Agentic AI实践指南|秘籍二:专用沙盒环境方案

针对多样化的应用场景,沙盒环境需提供灵活的代码执行方式,从执行模式看,系统需同时支持命令行直接执行以满足基础脚本运行需求,以及具备高阶代码解析能力的安全执行环境,确保代码在完全隔离的容器中运行;以某社区媒体营销文案生成Agent为例,营销人员只需输入“收集某某竞品在该社区上的营销策略”,Agent就能像真实用户一样操作浏览器:自动打开多个网页标签,浏览不同的产品页面和用户评论,收集关键的营销数据和用户反馈信息,然后基于收集到的数据进行分析,最终实现精准的内容推荐和广告投放策略。

2025-12-17 11:04:54 51

原创 Q CLI 助力合合信息实现 Aurora 的升级运营

合合信息与亚马逊云科技合作,成功将其Aurora MySQL数据库升级至3.10 LTS版本并迁移至Graviton4机型。通过QCLI工具加速技术验证,包括性能测试、应用切换分析等环节。升级后,CPU负载降低47%,事务延迟下降50%,显著提升了数据库性能。采用蓝绿部署方案确保平滑过渡,最小化业务影响。该项目展示了Graviton4机型的高性价比优势,以及Aurora 3.10 LTS版本的长期支持价值,同时验证了QCLI在运维场景中的高效辅助作用。

2025-12-16 19:08:46 999

转载 Agent原型虽好,却迟迟难落地?AgentCore来破局!

AgentCore的核心能力:支持安全部署的Runtime、用于监控的Observability、保障身份验证的Identity,以及企业级基础组件,正助力我们的团队高效开发和测试这些AI Agent,推动其在整个企业范围内实现规模化落地。这些要素协同作用,成就了单靠其中任一要素都无法实现的价值:打造出具备顶尖智能水平与企业级可靠性的AI Agent,同时它还拥有坚实的运营基础,能在生产环境中直接创造业务价值——无需等您花费六个月时间搭建基础设施,而是立即就能落地见效。您的竞争对手正在评估同样的机遇。

2025-12-16 11:07:00 58

原创 Amazon Connect结合Strands框架及Bedrock Agent Core的智能客服机器人解决方案(实践篇)

本篇讨论了亚马逊云科技Amazon Connect呼叫中心服务和Amazon Bedrock AgentCore以及Strands agent框架结合实现智能客服自助服务最佳实践。本博客从用户实际需求出发提供一个实际可行的解决方案,结合技术和成本综合考虑提供最佳实践。

2025-12-15 18:04:32 1109

原创 零售数字化转型新引擎:基于 Amazon Bedrock 和 Strands SDK 的 AI Agent 实践指南

是一个强大的 Python 框架,专为构建生产级 AI Agent 系统而设计。简洁的 API:易于上手,快速构建 Agent丰富的工具生态:支持Python 函数MCP 协议等多种工具集成方式多代理模式:支持GraphSwarmWorkflow等多种协作模式流式处理:支持实时响应和进度更新生产就绪:内置可观测性、安全防护等企业级特性通过以上实战演示,我们可以清晰地看到1. 开发效率极高# 传统方式:需要大量代码处理路由、参数解析、错误处理# Strands 方式:几行代码搞定。

2025-12-15 16:47:22 962

转载 效率飙升70%!基于AgentCore构建多Agents助手,简化数据保护流程

采用先进的大语言模型(LLM),将为Druva客户提供一个直观的对话式交互界面,方便客户能够通过该界面访问产品套件中的数据管理功能、获取安全洞察及运维支持服务。通过聚焦各关键组件的专项评估与严格的端到端测试,Druva确保了这款多Agents协作助手达到了准确性、可靠性与效率的最高标准,并从此次评估过程中积累的核心洞察,为该协作助手的持续优化升级提供了指引。通过精心设计、测试与持续优化,任何行业的企业都能借助AI协作助手,将自身数据、文档及内容与场景深度融合,提供智能且个性化的体验。

2025-12-15 16:01:30 84

转载 告别Agent孤岛!AgentCore Runtime现已支持A2A协议

在为AgentCore设计并落地A2A能力的过程中,她发挥了关键作用,助力客户能够打造功能复杂的多Agents系统,让各Agent自主协作,高效解决各类复杂业务难题。亚马逊云科技应用生成式AI解决方案架构师。Jeffrey专注于为企业客户设计并落地前沿生成式AI解决方案,同时热衷传递复杂技术知识,致力于将深奥的AI概念转化为可落地、可扩展的实用方案,助力客户创造业务价值。Host Agent向用户解释:它是一个编排Agent,基于自身可访问的远程Agent连接,专为亚马逊云科技的监控与运维工作而设计。

2025-12-12 11:07:45 48

原创 使用Amazon Bedrock和Pipecat构建低延迟智能语音Agent

本文探讨了构建智能语音Agent的核心技术方案。首先介绍了两种主流架构:Pipeline模式(STT-LLM-TTS分离)和端到端语音模型(如Amazon NovaSonic),对比分析了各自的优劣势。重点提出了延迟优化建议,包括模型选择、协议优化和部署策略。

2025-12-11 15:34:22 659

转载 12月18日!启动!re:Invent 2025中国行来了!

亚马逊云科技re:Invent 2025中国行将于12月18日正式启动——覆盖线上专场+北京、上海、深圳、成都四城巡展,为您带来从理念到实践的完整技术视角。新用户注册海外区域账户,可获得最高200美元服务抵扣金,覆盖Amazon Bedrock生成式AI相关服务。在拉斯维加斯呈现了Agentic AI重塑云计算的关键进展,Agentic AI不再只是概念,而是正在驱动企业应用、开发流程与业务模式的深刻变化。开启您的re:Invent中国行,期待与您一同探索Agentic AI时代的新可能。

2025-12-10 12:08:50 91

原创 【Agentic AI for Data系列】Kiro实战:DuckDB vs Spark技术选型全流程

本文通过AI开发助手Kiro对DuckDB和Spark进行技术选型对比,展示了AgenticAI驱动的智能决策流程。针对电商用户行为数据分析场景,Kiro在3天内自动完成环境配置、性能测试(22个维度指标)和结果分析。测试显示DuckDB在小文件处理上比Spark快90.4%,去重操作快97.4%。基于业务场景,AI给出选型建议:DuckDB适合单机小数据量交互式查询,Spark适用于分布式大数据处理。案例验证了AI原生开发范式可缩短80%选型周期,实现从需求理解到开源交付的端到端智能流程。

2025-12-09 15:45:52 946 1

转载 成本↓91%,效率↑96%!Quick Automate创新临床试验中心筛选方案

出现此类异常情况时,系统会返回准确的错误信息,并在不中断整个工作流的前提下,继续处理后续网站,保障操作的连续性与可靠性。尽管全球范围内有上万处可供开展医学研究的试验中心,但筛选决策却深受诸多因素掣肘,包括个人关系网络、信息透明度不足及数据不完整,导致试验启动延迟、试验中心资源无法得到充分利用,让临床试验发起方与研究中心双双错失宝贵机遇。为攻克这一问题,Kitsa选择与亚马逊云科技合作,构建了一套可扩展、安全且合规的自动化流程,能够将分散在各处的相关数据整合到统一的决策引擎中,为后续的精准决策提供坚实支撑。

2025-12-09 11:03:53 71

原创 从误判到精准:游戏社区 AI 审核的工程化实践

针对游戏社区UGC内容的多语言审核需求,我们设计了一套基于提示词工程和ReAct框架的AI审核方案。该方案通过以下关键创新解决了传统审核方法的痛点: 采用ReAct推理框架,让模型先分析文本语言、提取关键词、匹配违规类别,再做出最终判定,显著提高了审核一致性和可解释性。 通过5轮迭代优化提示词,在81%的整体准确率下平衡了效果与成本,特别改善了多语言一致性和灰色语境(如二次元梗)的误判问题。 构建完整的工程架构。

2025-12-08 09:56:41 892

转载 一图看懂Dr. Werner Vogels谢幕演讲:文艺复兴开发者的五门必修课

星标不迷路,开发更极速!听说,点完下面4个按钮。就不会碰到bug了!,获得更多精彩内容!

2025-12-05 22:10:49 65

转载 Werner Out,但Builders的传奇才刚开始!re:Invent 2025 Dr. Werner谢幕演讲

Werner使用黄石公园的狼群故事来解释系统性思维的核心道理:狼的减少不仅不会改善自然环境,反而单一的改变可以产生级联效应,导致环境恶化的严重后果。但这不是一场告别秀,“我不是要离开亚马逊,而是14年的re:Invent之后,你们值得一个更年轻、更新鲜的声音。成为文艺复兴开发者,意味着用技术解决世界上最困难的问题, 在技术深度和人文关怀之间找到平衡以及理解技术的社会影响,而不只是技术本身。“工作在于人,而不在于工具”,工具总是在不断发展和演进当中,AI是新型的工具,而开发者会不断学习和进步。

2025-12-05 22:09:35 86

如何在亚马逊云科技云服务上构建千万级用户应用

这个演讲将讨论如何如何充分利用云平台的特性和亚马逊云科技的相关服务来构建一个可以支撑千万级用户的应用。通过讨论不同用户数量级别的应用需求和架构特点,然后结合不同的亚马逊云科技云服务来满足用户访问,并最终逐渐把架构优化成为可以支持千万级用户的设计。这个演讲的目的是帮助对AWS服务有一定基础的用户进一步理解服务之间的差异以及基于AWS云平台构建高扩展性应用的关键服务及其使用注意事项。

2015-09-22

方国伟:基于亚马逊云科技的云灾备设计

通过基于亚马逊云科技云服务构建灵活、低成本的灾备方案,给企业带来一个保障业务连续性的创新方法。有研究表明,相对于传统灾备方案,基于云计算的灾备方案可以帮助企业最多节约85%的成本。在这个讲座中,我们首先讨论与灾备方案相关的亚马逊云科技基础服务,包括计算、存储、网络和数据库服务;然后我们会从技术的角度讨论常见的灾备架构以及它们的具体实现方式,从备份/恢复、“信号灯”方式、热备方式到多站点方式。

2014-05-29

Netflix在亚马逊云科技上的应用和创新

从2009年开始,Netflix逐渐把她的IT系统迁移到亚马逊云科技云服务,并开始进行业务转型——从DVD租赁演变为在线视频供应商。目前,在高峰期间Netflix的互联网下载流量已经占到北美地区的三分之一,而支撑Netflix的整个IT系统基本上构建在亚马逊云科技云上。

2014-05-29

360度解析亚马逊云科技存储服务V2

综合使用多种亚马逊云科技的存储服务能够帮助用户构建出一个高可用、弹性和可扩展的云计算应用。这个在线讲座将从互联网时代数据存储的多种需求出发,逐一讲解亚马逊云科技所提供的多种数据存储服务,包括完全基于非结构化数据存储的简单存储服务(S3),侧重于磁盘性能的弹性块存储(EBS)以及传统的关系型数据库服务和NoSQL数据库服务等,并以客户案例为例说明这些服务的实际应用场景。

2015-09-22

基于亚马逊云科技云服务的高可用应用设计 v1.0

云计算在给架构师带来了许多新的设计挑战的时候,也给带来了许多新的设计理念和可用的服务。如何在设计应用的时候充分利用云平台的各种特点是基于云平台设计的一个重要因素。在这个演讲中,我们将以亚马逊AWS云平台为例,讨论如何设计一个高可用应用。我们先会对AWS的服务进行高可用性的分类,并从高可用角度对典型服务进行介绍,然后依次讨论高可用设计的5大常见设计原则,并结合亚马逊云科技的相关服务依次进行架构设计分析。

2014-05-29

亚马逊云科技云服务入门介绍_方国伟

第一讲:亚马逊云科技与服务入门介绍 § 了解亚马逊云科技云计算概览及价值主张 § 了解亚马逊云科技云服务服务的特点:灵活、高效、弹性以及安全性 § 了解亚马逊云科技云服务的基础知识,包括亚马逊云科技的计算、存储、网络、数据库和大数据等服务概况

2014-05-29

方国伟:亚马逊云科技云服务的发展和创新

这部分讲述亚马逊云科技的发展背景和目前进展情况,主要包含三个方面:首先是介绍亚马逊云科技云服务的整体服务情况以及她的最新发展状况;然后以与亚马逊云科技相关的创新为例讲述亚马逊独特的创新文化;最后讲述亚马逊云科技如何针对大型企业的需求而推出的各种企业级服务和支持,从而满足不同类型客户的各种需求。

2014-05-29

亚马逊云科技的互联网存储服务

这是我们在2014年SNW大会上的演讲稿。我们正在进入数字化生存时代,因此如何保存爆炸性增长的数据是一个挑战。在移动互联网时代,我们需要面向互联网的存储。大数据需要像S3这样面向互联网的数据存储方式。S3为用户提供简单易用、安全可靠、海量的存储服务!

2015-09-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除