- 博客(2430)
- 资源 (9)
- 收藏
- 关注
原创 企业DevOps探讨:“谁构建、谁运行”原则的理论基础
“谁构建,谁运行” --沃纳·沃格尔这样的场景大家想必不会陌生:我们正与家人共度美好时光,突然刺耳的电话铃声嗡嗡响起,我们的注意力也为之吸引。听筒中的尖叫声告知,我们的应用程序——也就是那些定期受到内存泄漏侵扰、但重启之后又能恢复正常的小冤家们——现在终于彻底起义了,服务器资源在几分钟之内就被其彻底榨干。目前该应用已经无法正常起效,而运维团队除了尝试重启与回滚之外无法可想——而最新
2015-12-30 15:18:26
9773
原创 企业DevOps:实施过程中需要关注的各项要点
作者:亚马逊云科技企业市场战略总监Stephen Orban“经验并非凭空创造,而是依靠点滴积累所实现” ---阿尔贝·加缪在此次的企业DevOps探索之旅系列文章当中,我将带大家一同探讨企业在具备一定DevOps经验之后又该如何处理下一步可能面临的状况。当然,这些只是我个人在接触自动化、面向客户服务之IT体系以及“谁构建、谁运行”方面事务的同时积累下的一些心得体
2015-12-29 19:36:50
8369
翻译 将DevOps纳入企业环境引发的思考
作者:亚马逊云科技企业市场战略总监Stephen Orban“发展是一种以渐进式改善为载体的持续性行为”——英德拉瓦蒂虽然DevOps可以算是相对新鲜的概念,不过在我看来、其本质思路很早之前就已经出现。从这个角度看,目前很多企业已经广泛接纳这一概念并将其作为文化性产物看待,具体而言就是将大量原本孤立的团队融合起来,从而实现速度更快、频率更高且更为可靠的工作成果。我个人非常幸运
2015-10-13 17:38:41
6647
翻译 利用Amazon Machine Learning与Amazon Redshift建立二进制分类模型
日常生活中的大部分决策都以二进制形式存在,具体来说就是这类问题能够以是或者否来回答。而在商业活动中,能够以二进制方式回答的问题也有很多。举例来说:“这种情况是否属于交易欺诈?”,“这位客户是否会购买该产品?”或者“这位用户是否存在流失风险?”等等。在机器学习机制中,我们将此称为二进制分类问题。很多商业决策都能够通过准确预测二进制问题的答案来得到强化。Amazon Michine Learning(
2015-09-07 17:10:46
8553
翻译 利用Amazon Mobile Analytics与R深入探究移动应用的使用模式
作者:Sandeep Atluri 亚马逊数据科学家要真正鼓励用户使用我们的移动应用程序,最重要的前提就是深入了解用户使用应用程序时的行为模式,而后据此作出体验优化。不过通过应用程序事件数据来找出有意义的模式往往极具挑战性,而标准KPI所提供的诸如月度活跃用户(简称MAU)以及每日活跃用户(简称DAU)并不足以勾勒出完整的图景。举例来说,所发布应用在过去三十天中的用户开启次数能够帮
2015-08-31 18:33:41
7060
翻译 亚马逊云科技使用心得:当初我曾错过的那些宝贵经验
在今天的文章中,我整理出了大量当初曾经错过、而至今仍将我追悔莫及的亚马逊云科技(Amazon Web Services)使用心得。在几年来的实践当中,我通过在亚马逊云科技之上新手构建及部署各类应用程序而积累到了这些经验。虽然内容有些杂乱,但相信仍然能给各位带来一点启示。从物理服务器向“云环境”转移的过程不仅仅是一项技术任务,同时也意味着我们的思维方式需要作出针对性的转变。总体而言,在物理环境下我们
2015-07-08 22:52:17
29150
转载 成本可省55%!Amazon EMR Serverless Storage简化运维
并不能很好地工作,因为Shuffle数据可能会被作业的其它的Stage引用,如果释放Executor会造成Shuffle数据拉取失败、Stage重算,虽然Spark在k8s中提供了shuffle tracking的方式让DRA能够工作,但依然很不高效,依赖垃圾回收机制和。Spark作业在运行过程中需要临时存储来保存计算过程中产生的Shuffle数据,具体为每个作业的配置多大的存储空间来保存Shuffle数据,在作业运行之前不容易评估,可能的数据倾斜还会让用户要为Executor配置更多的存储。
2026-02-13 11:05:14
17
转载 别再硬扛传统Flink监控了!Strands Agents让智能分析与优化建议一步到位!
接收用户的自然语言请求、理解用户意图(查询作业列表、分析性能、获取建议等),将请求路由到合适的专业Agent,聚合多个Agent的结果,生成统一的回复。传统监控系统只能告诉您“出了什么问题”,但无法告诉“如何解决”。专注于Flink作业监控和分析,提供工具:获取作业列表、收集指标、分析健康状态,调用AI分析器进行深度分析,生成优化建议。处理通用对话(问候、帮助、闲聊等),提供系统使用指导,回答Flink相关的知识问题。能够自动收集指标、智能分析问题、提供优化建议,并通过自然语言对话的方式与用户交互。
2026-02-12 11:03:49
28
转载 大规模推理集群KV Cache复用困难,SageMaker轻松搞定!
这种方法确保了在内存管理过程中不会错误地移除关键的Source Blocks,从而避免了连锁反应式的缓存重建,显著减少了被驱逐的块数量,提高了缓存重用率,并降低了新用户提示词的首个Token生成时间(TTFT)。等为代表的前沿推理框架,通过引入不同形式的Prompt Cache等创新机制,实现了跨请求的KV缓存复用,为具有相似提示词结构的请求带来了显著的计算节省,可在单机环境下实现高效的KV缓存重用机制,显著降低了计算开销并提升了吞吐量。这导致了计算资源的重复消耗,推理延迟的增加,以及整体系统效率的下降。
2026-02-11 11:06:45
30
转载 节省74% Token!这种提示词膨胀解决方案实在优雅!
亚马逊云科技解决方案架构师,负责基于亚马逊云科技的云计算方案架构的设计和技术咨询,对于亚马逊云科技基础服务、容器化、应用开发有丰富经验,目前致力于亚马逊云科技生成式AI的推广。亚马逊云科技解决方案架构师,负责基于亚马逊云科技的云计算方案架构的设计和技术咨询,同时致力于亚马逊云科技在开发者和学生群体中的应用与推广,在Serverless领域有丰富经验。RAG-MCP在最新测试中展现了93.8%的准确率,优于全工具MCP的87.5%,同时保持了相同的88.9%成功率。
2026-02-10 12:26:25
36
转载 UDP通信总遇障碍?NAT网关一招破解路由不对称难题!
NLB将带着源IP的数据发送到IDC的Target后,由于Target会利用目的地址路由查找机制,匹配IDC的互联网出口路由进行回包,导致数据包不会通过DX返回给NLB(当响应包通过与请求不同的路径返回时,无法被正确关联到原始请求)。:UDP是无连接协议,NLB在UDP协议下无法关闭保留源IP功能,可以参考这个链接,这导致数据包必须保持原始源IP地址,当需要基于UDP同时收发数据的场景下,例如客户基于UDP自建Quic协议,就会存在上述问题。IDC服务器发送响应时,将NAT网关的IP作为目的地址。
2026-02-09 11:46:06
39
转载 三大生成式BI解决方案,让高门槛数据分析秒变简单对话!
在零售、金融、医疗保健和制造业等在内的多个行业领域,传统BI工具虽然功能强大,但操作复杂、门槛高,往往只服务于少数数据专家,例如数据分析师,导致大多数业务用户难以及时获得所需的数据洞察,企业的数据价值未能充分释放。生成式BI允许用户通过自然语言(文本或语音)与数据进行交互,无需掌握SQL、数据建模或复杂的BI工具操作,即可实现数据查询、分析、报表和可视化的自动生成,,在多视觉化数据回答中融入业务上下文和摘要洞察,使用户不仅能看到数据可视化结果,还能理解其业务含义,从而实现更全面、更有深度的数据分析体验。
2026-02-06 18:07:17
44
转载 传统知识库查得慢、答不准?用OpenSearch一键启动智能知识库
它不仅能够理解员工的模糊查询,提供精准的信息检索,还能基于企业知识进行上下文理解,生成符合企业语境的回答,大幅提升知识获取的效率与体验。得到如下的返回结果,可以看到返回结果中也分了两部分,第一部分是通过向量查询从知识库索引中查询的和问题相关的文档信息,第二部分则是将知识库查询到的文档内容组合成提示词之后再通过LLM返回的答案。然后,LLM使用动态检索的数据补充内容生成。然后在Web页面继续提问相同的问题,这样就可以比较直观的看到,这次查询参考的文档信息,并且在AI思考过程中提到从搜索结果中的补充内容。
2026-02-05 11:23:45
35
转载 从ChatBI到多Agent分析中台:亚马逊云科技与Snowflake的实战架构
的深度集成,这套多Agent对话式分析方案给出了一条可行路径:在不突破数据治理边界的前提下,让业务同学用自然语言完成从提问到行动的全链路,让数据团队从“报表工厂”升级为“智能分析中枢”。更快速、准确地构建可以在生产环境长期运行的分析助手,在不改变企业原有数据与治理体系的前提下,用多Agent协同和统一前台体验,把“对话问数”升级为可在生产环境长期运行的分析中台。使用YAML文件定义“业务词典”,为常见指标(如“销售额”、“毛利率”)和维度(如“区域”、“渠道”)建立到数据库字段、表关系的清晰映射。
2026-02-04 11:05:40
48
转载 云资源标签混乱、手动操作易出错,试试自动化标签管理!
该模块根据生成的配置文件,高效地遍历账户中的所有区域和服务,精确识别缺少特定标签的资源。该脚本使用预定义的服务模板库,涵盖常见亚马逊云科技服务的特性,同时具备自适应能力,能根据实际环境动态调整配置。智能检测已启用的服务,定义各类资源类型、对应的API调用方法以及数据提取逻辑,为后续扫描过程奠定基础。,该解决方案适用于多种场景,包括云迁移项目、成本分配优化等,还可以配合数据库或者文件存储做标签分类,执行标签操作,同时生成详细的执行报告,包括成功、失败和跳过操作的统计信息,确保标签应用过程可追踪。
2026-02-03 11:06:06
36
转载 告别KV Cache无法复用!Amazon SageMaker加速LLM推理
这样,在LLM推理的多轮对话场景中,GPU内存中的KV Cache得以保持和累积,如果存在,路由器会向推理服务器发起关闭会话的调用,服务器会返回一个成功的200响应以及会话ID,这些信息随后会被发送回客户端。通过这种方式,同一会话的所有请求都会路由到相同的推理实例,确保KV Cache的有效复用,显著提升多轮对话的性能表现。启用粘性会话后,同一会话的所有请求都会路由到同一实例,这样您的AI应用程序就能重复使用先前处理过的信息,功能,通过会话绑定机制,确保同一用户会话的所有请求都路由到相同的推理集群实例,
2026-02-02 11:03:48
39
转载 <span class=“js_title_inner“>Apple生态自动化理想之选!亚马逊云科技Mac实例一键部署OpenClaw</span>
如果您的核心需求是iOS/macOS开发、深度Apple 生态自动化、iMessage原生支持、Mac专属应用和工作流,并且希望享受云端的弹性、稳定性和亚马逊云科技体系能力,那么亚马逊云科技Mac实例是不二选择。本地Mac是单点,硬件故障、断电、断网就停摆。,处理iMessage、执行自动化、管理文件,而您的本地MacBook可以专注于日常使用,不被占用。企业或团队真正需要的,不是一个“会聊天的AI玩具”,而是一个能在云端持续工作、每个操作都留痕可查、无缝融入现有沟通工具的生产力助手。
2026-02-01 17:52:27
84
转载 Apple生态自动化理想之选!亚马逊云科技Mac实例一键部署OpenClaw
如果您的核心需求是iOS/macOS开发、深度Apple 生态自动化、iMessage原生支持、Mac专属应用和工作流,并且希望享受云端的弹性、稳定性和亚马逊云科技体系能力,那么亚马逊云科技Mac实例是不二选择。本地Mac是单点,硬件故障、断电、断网就停摆。,处理iMessage、执行自动化、管理文件,而您的本地MacBook可以专注于日常使用,不被占用。企业或团队真正需要的,不是一个“会聊天的AI玩具”,而是一个能在云端持续工作、每个操作都留痕可查、无缝融入现有沟通工具的生产力助手。
2026-02-01 17:52:27
158
转载 <span class=“js_title_inner“>账单太复杂?Q Developer+MCP轻松分析云成本!</span>
随着企业数字化转型的深入推进,亚马逊云科技云服务的使用规模和复杂度急剧增长,成本管理面临前所未有的挑战。:从亚马逊云科技官方API和网页获取最新定价信息,覆盖主要亚马逊云科技服务的定价查询,可以对按需、预留实例、Savings Plans等不同定价模式进行对比,:生成包含单价、用量、计算过程的详细报告,支持Markdown、CSV等多种格式,并基于分析结果提供成本优化建议。这种AI驱动的成本管理模式将成为企业云成本优化的重要工具,帮助企业更高效地进行云成本管理和优化。以上展示了多维度成本分析的基本能力。
2026-01-30 11:08:41
39
转载 账单太复杂?Q Developer+MCP轻松分析云成本!
随着企业数字化转型的深入推进,亚马逊云科技云服务的使用规模和复杂度急剧增长,成本管理面临前所未有的挑战。:从亚马逊云科技官方API和网页获取最新定价信息,覆盖主要亚马逊云科技服务的定价查询,可以对按需、预留实例、Savings Plans等不同定价模式进行对比,:生成包含单价、用量、计算过程的详细报告,支持Markdown、CSV等多种格式,并基于分析结果提供成本优化建议。这种AI驱动的成本管理模式将成为企业云成本优化的重要工具,帮助企业更高效地进行云成本管理和优化。以上展示了多维度成本分析的基本能力。
2026-01-30 11:08:41
43
转载 8分钟!一键部署Moltbot
您可直接Fork模板,嵌入如对接内部数据库、集成企业级SSO等定制化业务逻辑,并在多账户、多区域完成批量部署,所有实例配置标准化,大幅降低运维管理成本。可要是想让它记住更多上下文、同时服务10人,或是处理大文件,硬件跟不上的话,要么直接卡死,要么只能更换新设备。Moltbot赋予核心能力,亚马逊云科技提供坚实基础设施,而身为构建者的您,正手握二者融合的绝佳契机。请修改成您创建的keypair的pem文件的绝对路径,您也可以通过VS Code的SSH功能登录到Amazon EC2,方便后续的配置文件编辑。
2026-01-29 18:12:39
330
转载 <span class=“js_title_inner“>8分钟!一键部署Moltbot</span>
您可直接Fork模板,嵌入如对接内部数据库、集成企业级SSO等定制化业务逻辑,并在多账户、多区域完成批量部署,所有实例配置标准化,大幅降低运维管理成本。可要是想让它记住更多上下文、同时服务10人,或是处理大文件,硬件跟不上的话,要么直接卡死,要么只能更换新设备。Moltbot赋予核心能力,亚马逊云科技提供坚实基础设施,而身为构建者的您,正手握二者融合的绝佳契机。请修改成您创建的keypair的pem文件的绝对路径,您也可以通过VS Code的SSH功能登录到Amazon EC2,方便后续的配置文件编辑。
2026-01-29 18:12:39
75
转载 Nova模型家族实力进阶:更强智能!更低延迟!更高性价比!
在卫星互联网服务发布前,借助Amazon Nova Act消除了质量测试瓶颈,用自然语言撰写测试场景,并自动在数千个Web和移动端测试用例中执行和适配,大幅减少工程师投入时间,将原本需要数周的人力工作压缩到数分钟完成;Amazon Nova Act通过对定制版Amazon Nova 2 Lite模型进行强化学习训练来实现突破性的可靠性:系统在数以百计的模拟网页环境上持续运行数千个任务,使模型在基于UI的工作流中表现尤为出色,例如更新客户关系管理系统中的数据、测试网站功能,或提交医疗保险理赔申请等。
2026-01-28 12:05:57
49
转载 构建、安全、运维全链路覆盖!三大前沿Agent加速软件开发生命周期
尽管这些发现源自软件开发实践,但团队很快意识到,若未将相同能力拓展至软件开发生命周期的各个环节,如安全与运维领域,便可能面临形成新瓶颈的风险。这些Agent融合了亚马逊云科技数十年的软件开发经验、行业领先的安全实践和丰富的运维专业知识,助力用户从初始阶段就快速构建安全应用,并在运维过程中更有信心、更从容。Amazon DevOps Agent通过全天候事件分类、引导式解决,以及针对亚马逊云科技云环境、多云及混合环境中应用可靠性和性能的持续优化建议,为团队减少告警干扰、保障稳定运维。
2026-01-27 13:30:27
44
转载 AgentCore情景记忆功能,让Agent越用越聪明!
当面临相似的具体问题,且需要明确指引时,情景片段能发挥最佳效用。它们虽然可以获取相关事实与知识,却无法记住自己以往解决类似问题的方式,也不清楚某些方法奏效或失败的原因,这导致Agent在学习新知识与迭代优化方面,存在明显的短板。在这一模块的作用下,单个情景片段所沉淀的学习成果,不再局限于特定场景,而是会逐步升华成为具有广泛适用性的知识,从而指导Agent应对各类不同场景。反思模块基于跨情景片段反思机制运行:它会根据用户意图,检索过往相似的成功情景片段,并对多个情景片段交叉分析,得出更具普适性的经验洞察。
2026-01-26 13:11:27
45
转载 <span class=“js_title_inner“>AgentCore情景记忆功能,让Agent越用越聪明!</span>
当面临相似的具体问题,且需要明确指引时,情景片段能发挥最佳效用。它们虽然可以获取相关事实与知识,却无法记住自己以往解决类似问题的方式,也不清楚某些方法奏效或失败的原因,这导致Agent在学习新知识与迭代优化方面,存在明显的短板。在这一模块的作用下,单个情景片段所沉淀的学习成果,不再局限于特定场景,而是会逐步升华成为具有广泛适用性的知识,从而指导Agent应对各类不同场景。反思模块基于跨情景片段反思机制运行:它会根据用户意图,检索过往相似的成功情景片段,并对多个情景片段交叉分析,得出更具普适性的经验洞察。
2026-01-26 13:11:27
34
转载 <span class=“js_title_inner“>AgentCore情景记忆功能,让Agent越用越聪明!</span>
当面临相似的具体问题,且需要明确指引时,情景片段能发挥最佳效用。它们虽然可以获取相关事实与知识,却无法记住自己以往解决类似问题的方式,也不清楚某些方法奏效或失败的原因,这导致Agent在学习新知识与迭代优化方面,存在明显的短板。在这一模块的作用下,单个情景片段所沉淀的学习成果,不再局限于特定场景,而是会逐步升华成为具有广泛适用性的知识,从而指导Agent应对各类不同场景。反思模块基于跨情景片段反思机制运行:它会根据用户意图,检索过往相似的成功情景片段,并对多个情景片段交叉分析,得出更具普适性的经验洞察。
2026-01-26 13:11:27
44
转载 性能↑4.4倍,能效↑40%!Trainium3 UltraServers:让训练和部署AI模型速度更快、成本更低!
Trainium4在FP8性能上的3倍提升是一次基础性飞跃,使AI模型的训练速度至少提升3倍,或处理至少3倍的推理请求,并可通过持续的软件增强与特定工作负载优化获得更多额外加速。Trn3 UltraServers基于全新的3nm制程工艺的Trainium3芯片,使各类规模的企业能够更快训练更大的AI模型,以更低成本服务更多用户,让更多机构能够以更低门槛获取支撑未来前沿AI项目所需的算力。,包括至少6倍的FP4处理性能、3倍的FP8性能以及4倍的内存带宽,以支撑下一代前沿模型的训练与推理需求。
2026-01-23 11:11:43
69
转载 简单易上手!两大模型定制新功能,加速构建更高效的AI Agent
使用强化微调功能后,定制后的模型相比基础模型,平均可获得66%的准确率提升,使企业能够依靠更小、更快、成本更低的模型实现更好效果,而无需依赖昂贵的大模型。以强化学习为例,它通过人类或模型的反馈来训练模型,奖励正确行为、纠正错误行为。但随着越来越多企业希望使用更高级的定制技术,他们也需要更加流畅的体验,以消除那些耗时数月的阻碍,例如基础设施管理、合成数据生成等,从而专注于为客户开发更优的解决方案。解决方式在于定制化:使用更小、更专门化的模型来处理Agent最常执行的任务,以更低的成本提供更快、更准确的响应。
2026-01-22 15:53:13
52
转载 Amazon EC2 G7e实例正式可用!推理性能最高提升2.3倍!
此外,与G6e实例搭载的L40s GPU相比,G7e实例的GPU间带宽最高可。这些优化支持用户在单节点内跨多个GPU运行大模型推理任务,并且这些GPU提供的GPU内存总容量可。借助Amazon EC2 G7e实例更大的GPU内存,用户可在单块GPU上以FP8精度运行参数规模高达700亿的中等规模模型。通过PCIe互连实现GPU间的直接通信,从而有效降低多GPU工作负载的延迟。实例相比,实例吞吐量最高可提升至1.2Tbps,助力用户更快加载模型。,可满足小规模多节点工作负载的运行需求。同时,多GPU配置的。
2026-01-21 15:53:11
49
转载 性能飙升25%!Amazon Graviton5加速应用运行
我们与亚马逊云科技的合作使Calibre站在这场转型的前沿,我们很高兴宣布Calibre将支持基于Arm的Amazon Graviton处理器,与其他亚马逊云科技实例相比,在Amazon Graviton4上可实现约。re:Invent 2025,亚马逊云科技推出的Amazon Graviton5处理器正为应对这一需求而生,这是亚马逊云科技迄今为止性能最强、能效最高的定制芯片,为Amazon EC2上的广泛工作负载提供最佳性价比。,可直接减少等待数据的延迟,加快应用响应速度。
2026-01-21 11:01:13
46
转载 <span class=“js_title_inner“>性能飙升25%!Amazon Graviton5加速应用运行</span>
我们与亚马逊云科技的合作使Calibre站在这场转型的前沿,我们很高兴宣布Calibre将支持基于Arm的Amazon Graviton处理器,与其他亚马逊云科技实例相比,在Amazon Graviton4上可实现约。re:Invent 2025,亚马逊云科技推出的Amazon Graviton5处理器正为应对这一需求而生,这是亚马逊云科技迄今为止性能最强、能效最高的定制芯片,为Amazon EC2上的广泛工作负载提供最佳性价比。,可直接减少等待数据的延迟,加快应用响应速度。
2026-01-21 11:01:13
18
转载 准确率提升66%!上手Bedrock强化微调功能,打造更智能更经济的模型
强化微调是一种借助反馈而非海量标注数据集来训练模型的先进技术,但实施这项技术并非易事,通常需要专业的机器学习知识储备、复杂的基础设施支撑以及高额的资金投入,而且最终也无法确保能够达到特定业务场景所要求的精度标准。部署模型后,您可点击“在试验台中测试”,来通过Amazon Bedrock试验台快速评估模型性能,这有助于您使用示例提示词测试微调后的模型,并将其生成的回复与基础模型进行对比,来验证模型优化效果。在模型训练过程中,您可以实时监控各项指标,了解掌握模型的学习进展。然后点击创建,启动模型定制任务。
2026-01-20 11:02:48
67
转载 别再人盯系统了!DevOps Agent自主值守,智能预见运维风险
然而,服务成功恢复后,团队往往因精力有限,难以及时复盘此次事件处理过程中的经验教训,也无法将其转化为体系化的优化方案。Amazon DevOps Agent就如同一位全天候在线、自主运行工作的运维工程师,一旦出现问题,它便会自动关联您运维工具链中的各类数据,包括指标、日志以及GitHub或GitLab中近期的代码部署记录。板块中,选择创建Agent Space,输入名称,并创建所需的Amazon IAM角色,该角色将用于访问本人或其他用户亚马逊云科技账户中的各项资源。
2026-01-19 11:02:29
81
转载 自动控制浏览器的Agent!Nova Act几小时搞定原型构建到生产部署
然而,要将Agent应用于生产环境,仅获取模型访问权限是远远不够的。相较于其他AI框架,您可以在此界面跟踪工作流的进度、查看执行日志,其中每个步骤都会展示Agent的推理过程、执行操作以及浏览器截图,这种透明度与用户在IDE中开发时所体验到的基本相当,如今可直接应用于监控大规模生产环境中的执行情况。最终,Amazon Nova Act构建出的Agent系统并非偶尔才会发挥作用,而是在大规模应用场景下始终能够稳定可靠运行,同时具备强大的推理能力,能够灵活适应各种变化,轻松应对复杂多变的业务需求。
2026-01-16 11:28:30
60
转载 Security Agent:自动查APP漏洞!覆盖开发全生命周期!
我们很高兴能将Amazon Security Agent纳入SmugMug自动化安全工具体系,它将渗透测试完成时间从数天缩短至数小时,且成本仅为人工测试的一小部分,显著提升了我们在安全方面的投资回报率。渗透测试Agent会基于从安全需求文档、设计方案和源代码中学习到的上下文信息,为用户量身定制一套攻击方案,并在测试运行过程中,根据所发现的端点、状态、错误代码以及凭证等信息,动态调整测试策略。您也可以选择克隆此设计安全审查,基于当前配置创建新的评估任务,或选择下载报告,导出完整的审查结果以便与团队共享。
2026-01-15 12:47:35
96
转载 利用OpenSearch Service,向量数据库构建速度快10倍,成本降75%!
例如,如果您要求高检索质量(召回率),同时对响应速度要求不高,则可将延迟需求(p90)设为“适度(Modest)”,并将可接受检索质量(召回率)设为大于或等于0.9。自动优化功能则已在美国东部(俄亥俄州)、美国东部(弗吉尼亚州北部)、美国西部(俄勒冈州)、亚太(孟买)、亚太(新加坡)、亚太(悉尼)、亚太(东京)、欧洲(法兰克福)和欧洲(爱尔兰)地区的亚马逊云科技区域可用。您可利用全新的向量数据导入功能,从Amazon S3导入文档、生成向量嵌入、自动优化索引,并在短短几分钟内构建大规模向量索引。
2026-01-14 11:02:53
62
转载 首创!在训练中可加入专有数据!Nova Forge让大模型从通才秒变行家
当企业试图仅依靠自身专有数据,通过持续预训练(Continued Pre-Training,CPT)实现更深层次的模型定制时,往往又会遭遇灾难性的遗忘问题,即模型在学习新内容的过程中,会丢失原有基础能力。相较于仅使用原始数据训练模型的方式,这种数据融合方案能显著降低灾难性遗忘问题的发生概率,有助于在融入企业特定领域知识的同时,保障模型的核心智能水平、通用指令遵循能力及安全防护特性等基础能力不受损。开始构建模型前,需先选择要使用的检查点类型,包括预训练检查点、训练中期检查点或训练完成后检查点。
2026-01-13 15:39:20
74
转载 向量存储成本直降90%!S3 Vectors性能大幅提升
然后,它通过Amazon Titan文本嵌入模型,计算每个块的嵌入向量,再将这些向量及其元数据一并存储到新创建的向量存储桶中。您在单个索引中即可存储并检索多达20亿个向量,这意味着一个向量存储桶可存储的向量最多可达20万亿个,相较预览阶段单索引5000万向量的上限,存储容量提升了40倍。这款专为AI打造的存储服务,可让用户快速访问任意规模的向量数据,为完整的AI开发生命周期提供支撑,包括从初期的实验与原型设计到大规模生产部署的全流程。同时,您也可以存储更多不可筛选的元数据,以获取更丰富的上下文信息。
2026-01-12 11:25:28
132
转载 AgentCore新增四大功能,为Agent落地扫清困难
Agent所具备的自主性是其强大功能的主要来源,但这一特性也让规模化部署变得困难重重,因为Agent可能会不当访问敏感数据、做出未经授权的决策,或是执行超出预期的操作。例如,您可能会因为某次客户会议而需要将航班改签到更晚时段,当您下次预订行程涉及客户会议时,Agent会基于这些学习到的偏好,主动为您推荐灵活的返程方案。不同于通用大语言模型(LLM)的转译功能,该功能可以理解工具的结构逻辑,生成的策略不仅语法严谨规范,并且也与您的真实意图相匹配,同时还会标记出无法执行的规则。这项能力将常规规划分析工作耗时。
2026-01-09 13:39:53
120
如何在亚马逊云科技云服务上构建千万级用户应用
2015-09-22
方国伟:基于亚马逊云科技的云灾备设计
2014-05-29
Netflix在亚马逊云科技上的应用和创新
2014-05-29
360度解析亚马逊云科技存储服务V2
2015-09-22
基于亚马逊云科技云服务的高可用应用设计 v1.0
2014-05-29
亚马逊云科技云服务入门介绍_方国伟
2014-05-29
方国伟:亚马逊云科技云服务的发展和创新
2014-05-29
亚马逊云科技的互联网存储服务
2015-09-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅