• 博客(2106)
  • 资源 (9)
  • 收藏
  • 关注

原创 企业DevOps探讨:“谁构建、谁运行”原则的理论基础

“谁构建,谁运行” --沃纳·沃格尔这样的场景大家想必不会陌生:我们正与家人共度美好时光,突然刺耳的电话铃声嗡嗡响起,我们的注意力也为之吸引。听筒中的尖叫声告知,我们的应用程序——也就是那些定期受到内存泄漏侵扰、但重启之后又能恢复正常的小冤家们——现在终于彻底起义了,服务器资源在几分钟之内就被其彻底榨干。目前该应用已经无法正常起效,而运维团队除了尝试重启与回滚之外无法可想——而最新

2015-12-30 15:18:26 9466

原创 企业DevOps:实施过程中需要关注的各项要点

作者:亚马逊云科技企业市场战略总监Stephen Orban“经验并非凭空创造,而是依靠点滴积累所实现” ---阿尔贝·加缪在此次的企业DevOps探索之旅系列文章当中,我将带大家一同探讨企业在具备一定DevOps经验之后又该如何处理下一步可能面临的状况。当然,这些只是我个人在接触自动化、面向客户服务之IT体系以及“谁构建、谁运行”方面事务的同时积累下的一些心得体

2015-12-29 19:36:50 8093

翻译 将DevOps纳入企业环境引发的思考

作者:亚马逊云科技企业市场战略总监Stephen Orban“发展是一种以渐进式改善为载体的持续性行为”——英德拉瓦蒂虽然DevOps可以算是相对新鲜的概念,不过在我看来、其本质思路很早之前就已经出现。从这个角度看,目前很多企业已经广泛接纳这一概念并将其作为文化性产物看待,具体而言就是将大量原本孤立的团队融合起来,从而实现速度更快、频率更高且更为可靠的工作成果。我个人非常幸运

2015-10-13 17:38:41 6361

翻译 利用Amazon Machine Learning与Amazon Redshift建立二进制分类模型

日常生活中的大部分决策都以二进制形式存在,具体来说就是这类问题能够以是或者否来回答。而在商业活动中,能够以二进制方式回答的问题也有很多。举例来说:“这种情况是否属于交易欺诈?”,“这位客户是否会购买该产品?”或者“这位用户是否存在流失风险?”等等。在机器学习机制中,我们将此称为二进制分类问题。很多商业决策都能够通过准确预测二进制问题的答案来得到强化。Amazon Michine Learning(

2015-09-07 17:10:46 8267

翻译 利用Amazon Mobile Analytics与R深入探究移动应用的使用模式

作者:Sandeep Atluri 亚马逊数据科学家要真正鼓励用户使用我们的移动应用程序,最重要的前提就是深入了解用户使用应用程序时的行为模式,而后据此作出体验优化。不过通过应用程序事件数据来找出有意义的模式往往极具挑战性,而标准KPI所提供的诸如月度活跃用户(简称MAU)以及每日活跃用户(简称DAU)并不足以勾勒出完整的图景。举例来说,所发布应用在过去三十天中的用户开启次数能够帮

2015-08-31 18:33:41 6810

翻译 亚马逊云科技使用心得:当初我曾错过的那些宝贵经验

在今天的文章中,我整理出了大量当初曾经错过、而至今仍将我追悔莫及的亚马逊云科技(Amazon Web Services)使用心得。在几年来的实践当中,我通过在亚马逊云科技之上新手构建及部署各类应用程序而积累到了这些经验。虽然内容有些杂乱,但相信仍然能给各位带来一点启示。从物理服务器向“云环境”转移的过程不仅仅是一项技术任务,同时也意味着我们的思维方式需要作出针对性的转变。总体而言,在物理环境下我们

2015-07-08 22:52:17 28812

转载 模糊描述还能查找视频?Amazon Bedrock来真的!

从输出结果角度,Amazon BDA支持标准结果和自定义结果的输出,当用户选择自定义结果的输出时,可以用prompt的方式去生成想要的结果。技术,运用AI自动剖析视频内容,提取关键信息,通过向量搜索达成语义智能匹配,实现多角度(视频关键字、台词、场景描述)视频检索,有利于提升用户搜索效率,增加平台活跃度,也为视频创作者创造更多曝光机遇。Shots:是BDA自动将视频分割成多个镜头,每个镜头包括开始和结束的时间码,开始和结束的时间戳(毫秒),开始和结束的帧索引,持续时间,置信度,所属章节索引。

2025-05-30 11:01:41 7

原创 翰德 Hudson 携手亚马逊云科技,基于 MCP Agent 重塑智能招聘新范式

翰德 Hudson 的实践为人力资源行业数字化转型提供了可复制的范例,推动了生成式 AI 在招聘垂直领域的创新应用,构建了人机协作的新模式,助力行业迈向更加智能、高效的未来。无服务器架构 Amazon Lambda 或 AWS Fargate 的弹性伸缩能力应对高峰时期的并发请求,Amazon Lambda 按照调用次数收费,不会造成空闲资源浪费, 适合无状态的 MCP Server,而 Amazon Fargate 可以提供物理隔离的容器环境,适合有状态的 MCP Server;

2025-05-30 09:23:05 770

转载 8大招式!Amazon SageMaker花式解决模型部署难题

在推理管道模型中,您添加到容器中的处理步骤,既可以是针对模型输入和输出的处理脚本,也可以结合使用内置算法和自定义算法,所有这些步骤都会按照顺序依次执行。如果您正在使用基于同一机器学习框架构建的多个模型,且这些模型使用频率不高,也无需单独的自动扩展策略(因为这些模型共享同一个容器和底层计算资源,所以它们会作为一个整体单元共同进行扩展),那么该方式将非常适用。提供了非常精细的方式,来配置机器学习工作负载的部署策略,并可简化机器学习模型落地生产系统的流程,提供了一套完全托管且高可用的基础设施,能够满足各种需求。

2025-05-28 11:01:31 12

原创 从零开始:使用 Amazon Q CLI 开发一款软件

过长的代码可能导致 Q 阅读和修改代码的时候,只是进行了局部操作,忽略上了过长的上下文,导致局部逻辑正确,整体代码结构错乱,例如在一个 500 行的 python 代码中修改曾经出现,修改后的代码片段“缩进格式不正确”,然后 Q 会反复尝试修改以最小修改量来修复这个错误,最后花了很多时间迭代数十次才完成任务。根据测试,我们可能会发现,工具只是简单从 java 的 pom.xml 中解析了<dependency>中的依赖,但是没有检查依赖包的子依赖。工具需要支持 python,nodejs,java。

2025-05-28 09:22:13 892

转载 从愿景到现实,这届中国峰会你不容错过!

2025年,是生成式AI从概念到实际商业价值的“落地之年”,2025中国峰会从愿景到现实,聚焦生成式AI的全球实践,连接千行百业的管理者、开发者、创业者,点燃多维互动的创新火花。当科技遇见她的远见,当创新融入女性力量。首届女性论坛中,来自多元领域的卓越女性,将分享她们在AI时代的创新实践与蝶变故事,从技术突破到行业变革,从商业价值到社会责任,以跨界思维碰撞创新火花,,国内外独角兽企业实战分享前沿技术与产品,与行业专家共同探讨技术、增长、安全与创新,倾力打造与大型企业的沟通桥梁,助力初创企业加速成长。

2025-05-27 11:02:39 16

转载 如何解决Agent集成难题?MCP Server运行教程带你搞定!

而言,若要成功完成诸如“安排一次领养狗狗的预约”或“为代码添加一项功能,以便让用户可以安排领养狗狗的时间”等任务,就需要访问AI系统之外的相关信息或资源。最初,出于多种原因,MCP规范采用了有状态的网络协议(SSE),其中包括部分集成场景需要向客户端与Agent发送各类更新信息,例如工具列表发生变化的情况。随着技术的不断发展,诸多令人振奋的事情正在开发领域上演,而其中最引人瞩目的,莫过于将AI集成到系统和开发工具的各个不同部分,正变得愈发容易。的方式,涉及MCP规范中概述的“传输方式”。

2025-05-26 11:01:23 14

原创 利用生成式 AI 加速应用程序 Operational Readiness Review(ORR)流程

运营就绪审查(ORR)是一个结构化的评估过程,用于确定应用程序或系统是否已准备好投入生产环境。ORR 通常涵盖多个关键领域,包括:安全性与合规性可靠性与弹性性能与效率可操作性与可维护性成本优化ORR 的目标是在应用程序部署前识别并解决潜在问题,确保系统能够满足业务需求和技术标准。在做 ORR 的时候,运维和开发团队的负责人需要在公司统一的审查标准之上,对应用程序的各个方面进行审查,并最终生成报告。

2025-05-26 09:47:38 761

转载 Claude Opus 4和Sonnet 4模型,全面上线Amazon Bedrock!

虽然现有模型响应迅速且流畅,但要在较长时间内,尤其是在编码、研究或企业工作流程等领域,始终保持逻辑的连贯性以及上下文的一致性,仍然颇具挑战。例如,开发者可以设定一个最大token数量作为限制条件,模型处理任务时,则会在该token数量范围内进行深度思考与推理,从而既能在一定程度上保证响应速度,又能尽可能提供更深入、更精准的答案。在多Agents系统中,Sonnet 4作为专门处理特定任务的子Agent表现出色,能够承担诸如针对性代码审查、搜索与检索等职责,或在更广泛的流程中,负责独立功能的开发工作。

2025-05-23 12:30:22 18

原创 提升开发运维效率:原力棱镜游戏公司的 Amazon Q Developer CLI 实践

找到GuideNavigationContext.cs 然后里面有UIManager.CreateView的调用,我现在需要异步编程,所以我写了一个新的UIManager.CreateViewAsyncUniTask,我现在需要你帮我把GuideNavigationContext.cs里面的同步改异步,UniTask你可以从工程里找到,你试试吧。最后,CLI 提供了完整的操作总结,包括所创建资源的概览、如何访问服务的说明,以及生成的 update_pod.sh 脚本使用说明。

2025-05-23 09:52:37 967

转载 省省吧!教你一招搞定Amazon MSK流量成本优化难题

写入端向主题中发送的消息可以大致均衡的分布在这个主题的多个分区上;每个分区的主副本分区负责承载写入端的写操作和消费端的读操作,其他的副本分区在Kafka集群内部同步主副本的消息,为2时,Producer(写入端)向Amazon MSK写入的消息会先送达到分区主副本所在的节点,然后消息会在Amazon MSK集群内部自动向另外的2台分区副本所在的节点同步;集群的消费端,可以在同可用区内就近消费分区中的数据,该特性允许消费端从副本分区所在的节点进行数据拉取并消费,而以往消费端只能在主副本分区上进行数据拉取。

2025-05-22 11:01:42 25

转载 依赖包生命周期管理太难?Amazon Q CLI来帮你!

添加扫描进度条,提取项目名在扫描报告中,扫描的报告需要支持text、json、html格式,扫描结果的不同状态用emoji进行表示。”拆分后的短小代码,在后续的修改中成功率会更高,步骤数更少。过长的代码可能导致Amazon Q阅读和修改代码时,只进行局部操作,而忽略过长的上下文,导致局部逻辑正确,整体代码结构错乱。例如在一个500行的python代码中修改曾经出现类似情况,修改后的代码片段“缩进格式不正确”,然后Amazon Q会反复尝试修改以最小修改量来修复该错误,最后花了很多时间迭代数十次才完成任务。

2025-05-22 11:01:42 33

转载 零基础教程|Bedrock+DeepSeek快速搭建企业智能客服系统

本教程专注于Flask应用的本地搭建和功能实现,适合希望在本地环境中测试和开发智能客服系统的企业用户。对于未来计划将系统部署到微信公众号、网页客服或内部系统的用户,Flask应用也可以作为后端服务,便于与这些平台进行集成。调用了DeepSeek模型,并基于预设的知识库提供了准确的回答。”时,系统会结合上传的考勤制度文件,生成详尽的解答。因此,如果确定短期内不再使用该知识库,建议按照以下顺序清理资源,以避免产生不必要的费用。如果没有DeepSeek模型的使用权限,可点击页面上的“申请”按钮获得权限。

2025-05-21 11:02:21 28

转载 云效账单分析利器!Amazon CUR助您轻松掌控云成本

打开控制台,在「账单」服务界面下,点击菜单上的「账单」,就能看到按服务拆分的账单。对于预留实例,真实使用的实例,其费用显示会是0,用户在统计的时候就不会把这些统计进去,但还是能看到预留实例优惠的实际应用情况,,这个指的是账单发票ID,而更实际的意义,是代表这个账单是否已经正式出具,等待客户付款。通过VCPU小时数,可以避开机型的影响,更真实地看到业务量的变化。需要注意的是,CUR报告默认是不打开的,并且也无法追溯以往的记录,只有用户手动打开之后,详细的用量数据才会被导出到指定的Amazon S3桶。

2025-05-21 11:02:21 33

原创 基于亚马逊云科技构建音视频直播审核方案

随着互联网内容形态的多样化发展,用户生成内容(UGC)呈现爆发式增长。社交平台、直播、短视频、语聊房等应用场景中,海量的音视频内容需要进行实时审核,以维护平台安全与用户体验。然而,企业在构建审核系统时通常面临以下挑战:审核准确性:需要精准识别多种媒介中的违规内容,减少误判率实时性要求:在直播等场景要求尽可能快地获取结果成本压力:审核成本高昂,自建审核平台投入大规则定制:不同场景下的审核标准各异,需要灵活配置系统稳定性:需要支持高并发且保证服务可用性。

2025-05-21 09:03:55 1103

转载 三步打造物流数据湖方案,数据存储与查询效率飞升

Amazon S3的高可用性和弹性存储能力,结合Redshift的列式存储和大规模并行处理(MPP)架构,使得复杂查询的响应时间大幅缩短,用户能够在几秒钟内获取所需数据,从而提升决策效率。:随着2B业务的发展,需要维护的数据库数量不断增加,DB之间的相互调用加大了数据接口管理复杂性,同时自建DB的可用性挑战越来越大。WMS的主要功能有入库管理,出库管理,库存管理,并对接订单数据与物流数据,提供物流送达数据分析与报表,打造无缝的技术体验。,系统可以自动发现数据源并生成元数据,方便后续的数据分类和搜索。

2025-05-20 11:02:03 37

转载 MCP+Amazon Bedrock协作,模型调用更灵活、更智能!

1.阅读网页并进行内容总结对人类而言,是一项很简单的任务,但大语言模型(LLM)通常无法像人类一样主动访问网页,也无法获取其参数记忆之外的信息。为了演示这个过程,本文会在当前的服务器文件中加入几个非常实用的功能,并展示Claude如何智能地将它们组合使用,同时准确地区分各个工具的作用。请求从给定的URL获取内容的工具。发送请求,传递对话历史、可用工具和模型配置参数,以获取来自基础模型的响应,处理下一轮对话。3.对于工具的使用,它调用工具处理程序,并使用工具的结果向Amazon Bedrock发起新的请求。

2025-05-20 11:02:03 31

原创 Amazon Bedrock 上的模型擂台赛:Nova、Claude,谁是最强图片/视频审核大模型?

本文将使用相同的视频图像审核测试数据集,从审核准确率、误报率、漏报率等多项指标全面评估亚马逊云科技 Amazon Bedrock 上三款多模态大模型的表现差异,这包括亚马逊自研大模型 Nova 系列的 Lite 和 Pro 模型、Anthropic 的 Claude 3.7 Sonnet 模型,对比分析不同模型在色情内容和暴力内容审核场景下的优势,为您选择和构建合适的基于大模型的内容审核解决方案提供洞见与参考。Nova Lite 对色情图片的检测准确率为 50%,对暴力图片的检测准确率为 88.33%

2025-05-20 08:25:47 727

转载 数日即可构建Agent?Strands Agents说到做到!

尽管LLM的性能逐渐提高,但这些改进并不意味着可以利用现有的框架更快地构建和迭代Agent,Clare团队仍需花费数月时间让一个Agent达到生产可用的状态。为了完成Agent原型的开发和部署,Clare团队不得不依赖各种复杂的Agent框架库,这些库能够为Agent提供所需的基础架构和编排能力,确保其在早期模型中能可靠的完成任务。在每次循环中,Strands会将提示词、Agent上下文以及Agent工具的描述信息,一并传递给LLM。例如,可在Lambda函数中运行Agent工具,同时在。

2025-05-19 17:30:00 102

转载 快速上手教程!构建MCP Client代理Amazon Bedrock请求

亚马逊云科技SaaS Factory高级解决方案架构师,致力于帮助客户在亚马逊云科技上构建SaaS解决方案。如下代码会接收输入,并保持对话循环,直至用户退出(输入空白消息)。使用Converse时,您需要提供包含用户与助手之间所有消息的对话记录。则是一款可供使用的开源协议,但您需要构建一个客户端,来代理。MCP目前仍处于初期发展阶段,但这类工具在提升。,以便将请求代理到MCP Servers,,则可在代码中指定的位置,通过以下代码将。的同时,常需使用其他资源或工具。调用正确的工具,并将响应返回给。

2025-05-19 11:01:03 49

转载 变长特征序列处理太头疼?Amazon SageMaker治愈开发焦虑!

以上方案1中,把变长特征通过截断和padding,处理为定长的序列特征字段,该方案会导致特征数据膨胀问题,比如原来某一特征列在原始数据中只有5个多值key和weight权重,而如果特征基数为10,需要padding为定长10的特征序列,则会膨胀一倍。在模型训练时传入特征训练数据,该API只能接收定长序列的特征字段类型。和截断的定长序列特征、保持变长序列特征的两种训练方案,两种方案各有特色,分别适用于不同的应用场景,旨在建立一个高效、可扩展的变长特征处理框架,为推荐和广告系统的模型训练提供更好的支持。

2025-05-19 11:01:03 41

原创 Amazon Q 从入门到精通 – 测试与重构

本文以一个“意大利面条式”的,充满了不良设计的代码为样例,展示了 Amazon Q Developer 如何能够以简单/精炼的自然语言交互的方式,短时间内帮助开发者完成代码重构和自动化测试用例的编写,在确保代码质量的同时,大大降低了测试代码的维护成本。不仅如此,当业务代码不断随着市场需求发生频繁变化的时候,开发者将可以随时以智能化、自动化的方式,让 Amazon Q Developer 协助生成最新的单元测试代码,让单元测试能够提供精确代码质量保证的同时,不再产生高昂的维护代价!

2025-05-19 09:29:13 679

转载 内存带宽涨60%!EC2 P6-B200实例训练推理性能飙升2倍

借助这些实例,您可以加速基础模型训练产品的上市时间,通过提供更快的推理吞吐量以降低推理成本,从而推动生成式AI应用的普及。的超大规模集群能力,以及亚马逊云科技Nitro系统的高级虚拟化和安全功能相结合,您能够在更高的安全性下,以更快速度和更大规模训练和部署基础模型。Amazon EC2容量块使用时长预留天数可选1-14天、21天、28天,或以7天为增量,最长不超过182天,最多可提前8周设置最早启动日期。这些实例在生成式AI训练(训练耗时)和推理(每秒处理的token)方面的性能提升可达两倍之多。

2025-05-16 17:30:00 49

转载 SageMaker AI+MCP,快速原型设计指南

此外,她还撰写了19篇关于人工智能与机器学习和云技术的博客文章,并且是一篇关于CORD19神经搜索研究论文的合著者,该论文在享有盛誉的 AAAI(人工智能促进会)上荣获最佳研究论文奖。他与各行各业的企业合作,设计定制化的AI Agents,利用亚马逊云科技的机器学习技术栈解决复杂的商业挑战。标准下,MCP利用标准输入与输出(stdio)或可流式传输的HTTP等传输方式,具有诸多重要优势,例如卓越的故障隔离能力、动态服务发现机制、一致的安全控制措施,以及即插即用的可扩展性。最后,关闭数据流,以结束与。

2025-05-16 11:04:56 86

原创 利用 Amazon Bedrock Data Automation(BDA)对视频数据进行自动化处理与检索

将 BDA 作为处理视频的手段之一减少了手工分镜,取帧等的工序。无服务器的架构为整体的设计提供了低成本的计算资源,后续的数据的存储选用 DocumentDB 也是希望可以用灵活地手段做 Json 数据处理。在 AI 模型的加持下,希望本文能够为 AI 与视频搜索提供了一种新思路。

2025-05-16 08:54:45 800

转载 电商图片检索如何更精准?Amazon Bedrock构建解决方案轻松搞定!

对于文本+图片结合的图片检索,可以开启重排序功能,提供文字细节描述检索图片,增强检索准确度。应用大模型,在图片检索场景中可以提供增强的能力,如电商细分品类图片精准检索能力,用户可自定义提示词利用大模型生成对图片的描述信息,提升偏向性的检索召回效率,还可自定义提示词对召回图片进行重新排序,更加精准地检索图片。上传图片时,可选生成图片的精准描述,用户也可在源代码中修改提示词,获取更加贴近业务场景的关键描述信息,通过模型自动生成的描述信息也可以通过API或直接在UI进行修改。实现文本+图片的多模态检索。

2025-05-15 11:03:42 58

转载 省钱提速新利器:Amazon Bedrock智能提示路由

由于路由机制会优先调用成本较低的模型,同时使任务中的基准准确率保持不变,因此尽管会增加开销,但与总是调用更大或更贵的模型相比,您仍有望获得降低整体延迟和成本方面的优势,下文基准结果部分将进一步讨论这个问题。若要使用其他语言或自定义用例,请在生产应用程序中实施提示路由之前,自行进行测试,或联系您的亚马逊云科技账户团队,以获得设计和开展相关测试的帮助。使用默认路由进行实验后,您可以根据您的使用场景需求自行配置路由,在测试环境中评估响应质量,如果这些路由满足您的要求,即可将其用于生产应用程序。

2025-05-15 11:03:42 63

原创 全新 Graviton4 实例,提升 Valkey 性价比

Valkey 是一个基于 Redis 的高性能键值存储系统,专为云环境设计。它继承了 Redis 的所有优点,如快速的读写速度、丰富的数据结构支持,同时还增加了一些云原生特性,如自动伸缩、跨区域复制等。Valkey 广泛应用于缓存、会话存储、实时分析等场景,成为许多企业的首选解决方案。主要特点:高性能:毫秒级的读写延迟可扩展性:支持横向和纵向扩展高可用性:内置故障转移和数据持久化机制丰富的数据结构:支持字符串、列表、集合、有序集合等云原生:易于在云环境中部署和管理您可以通过查看博客文章。

2025-05-15 09:31:32 850

转载 架构图创建难?Amazon Q CLI + MCP来破局!

在动态变化的云环境中,及时更新这些架构图以准确反映基础设施的变化,不仅会成为提高生产力的瓶颈,还可能导致文档与实际情况出现偏差。亚马逊云科技社区构建者、FinOps专业人士、热衷于DevOps的爱好者、充满激情的演讲者、博客写手,以及崭露头角的“云技术领域影响力人物”,致力于帮助他人在云技术领域构建坚实的职业生涯。做准备工作的解决方案架构师,亦或是正在学习云架构模式的开发者,采用这种方法都能显著加快您的工作流程。您可按照上述步骤进行设置。复杂的图表可能会超出提示词语境的限制,或者生成结构不清晰的图表。

2025-05-14 11:01:43 53

转载 无需托管事件总线! Amazon EventBridge实现跨账户事件传输

这两个团队只能管理目标账户,例如创建SQS队列等传输目标,并授予权限,以接受来自源账户中集中式事件总线的事件。两种方法都有源账户和目标账户,但是跨账户通信的设置方式不同。然后,您需要在源事件总线上配置一条规则,把事件发送到目标事件总线,并在目标事件总线上再配置一条规则,才能将事件传输到目标账户中的所需目标。您将使用源账户中的事件总线将事件直接发送到目标账户中的SQS队列、Lambda函数和SNS主题。例如,您可能在多个账户中托管了一组事件总线,这些总线将与安全相关的事件分发到托管在集中式账户中的。

2025-05-14 11:01:43 41

原创 Apache Seatunnel &amp; Amazon Bedrock 助力生成式 AI 应用规模化生产实践

本文通过 Apache SeaTunnel + Amazon Bedrock + Amazon OpenSearch 的组合,构建了一套高可扩展性、低耦合的语义搜索数据处理链路,成功实现了从结构化/非结构化文本数据到向量检索系统的全流程集成。该方案具有如下优势:松耦合架构设计:SeaTunnel 的插件式 Transform 和 Sink 机制,使得模型调用与向量写入逻辑保持解耦,方便后续替换嵌入模型或变更底层向量数据库;

2025-05-14 08:56:24 690

转载 Valkey能否成为Redis替代选项?性能测试告诉你答案

通过增加IO线程数,Redis可以并行处理更多的网络IO操作,减少单线程处理的瓶颈。,但需要结合服务器规格来设置,会存在临界点,即再增加IO线程,不会再带来额外性能提升。Set有IO线程多路复用。亚马逊云科技解决方案架构师,负责基于亚马逊云科技的云计算方案架构的咨询和设计,在云计算行业有超过9年的从业经验,具有丰富的项目实践经验,目前专注于游戏行业。亚马逊云科技已经在托管的服务中做了最适配的设置,对于自建Valkey,可以按照需要设置。从理论分析,IO多路复用的提升,内存资源的节约应该对性能有正向的提升。

2025-05-13 11:02:08 106

转载 AI也可分工协作!基于多Agents协作功能构建金融助理

它能高效管理自动化报告的分发流程,同时处理与利益相关者的沟通工作,提供格式规范的电子邮件,其中包含投资组合信息以及文件摘要,确保这些信息能够准确送达目标收件人。利用Agent的高级提示功能,验证指定架构的正确编排。这种方法是必要的,因为动作组遵循特定的架构,您需要在最小化因默认参数导致的不合理输出(即“幻觉”现象)的同时,保障Agent之间实现无缝协作。亚马逊云科技云支持工程师。金融Agent充当主要监督者和核心协调者的角色,负责协调各专业Agent之间的操作,并管理整体工作流程,以及负责向用户呈现结果。

2025-05-13 11:02:08 86

原创 基于 Amazon Bedrock 和 Amazon Connect 打造智能客服自助服务 – 设计篇

本篇文章讨论了基于亚马逊云科技 Amazon Connect 和 Amazon Bedrock 的智能化呼叫中心架构的设计及成本分析。文章从用户实际需求出发,提供了一个可行的解决方案,并结合技术和成本综合考虑提供了最佳实践。本设计充分考虑了呼叫中心的特殊性,采用提示词工程结合 RAG 知识库等不同技术方式,提供最佳的客户体验;采用 Amazon Connect 特有的随路数据作为 Prompt 提示词的缓存机制,简化了提示词缓存的实现机制;

2025-05-13 09:06:24 944

转载 基于Amazon SageMaker IC与LiteLLM,构建自主MaaS中台

组件中,可以指定要分配给模型每个副本的加速芯片数量、CPU数量、显存量等,以及要部署的LLM、推理的容器映像和模型副本数量,从而允许客户更精细地控制多个模型的部署和资源分配。(注意,最终扩缩的还是instance实例,即copies增大,instance也需要对应增大,否则没有足够的GPU卡资源,同样会报错,扩缩失败),如下所示。推理组件允许客户指定要分配给不同的模型每个副本的加速器数量和内存量,以及模型对象、容器映像和要部署的模型副本数量,从而方便实施多个模型的资源隔离和分配。

2025-05-12 11:02:14 88

360度解析亚马逊云科技存储服务V2

综合使用多种亚马逊云科技的存储服务能够帮助用户构建出一个高可用、弹性和可扩展的云计算应用。这个在线讲座将从互联网时代数据存储的多种需求出发,逐一讲解亚马逊云科技所提供的多种数据存储服务,包括完全基于非结构化数据存储的简单存储服务(S3),侧重于磁盘性能的弹性块存储(EBS)以及传统的关系型数据库服务和NoSQL数据库服务等,并以客户案例为例说明这些服务的实际应用场景。

2015-09-22

亚马逊云科技的互联网存储服务

这是我们在2014年SNW大会上的演讲稿。我们正在进入数字化生存时代,因此如何保存爆炸性增长的数据是一个挑战。在移动互联网时代,我们需要面向互联网的存储。大数据需要像S3这样面向互联网的数据存储方式。S3为用户提供简单易用、安全可靠、海量的存储服务!

2015-09-22

如何在亚马逊云科技云服务上构建千万级用户应用

这个演讲将讨论如何如何充分利用云平台的特性和亚马逊云科技的相关服务来构建一个可以支撑千万级用户的应用。通过讨论不同用户数量级别的应用需求和架构特点,然后结合不同的亚马逊云科技云服务来满足用户访问,并最终逐渐把架构优化成为可以支持千万级用户的设计。这个演讲的目的是帮助对AWS服务有一定基础的用户进一步理解服务之间的差异以及基于AWS云平台构建高扩展性应用的关键服务及其使用注意事项。

2015-09-22

基于亚马逊云科技云服务的高可用应用设计 v1.0

云计算在给架构师带来了许多新的设计挑战的时候,也给带来了许多新的设计理念和可用的服务。如何在设计应用的时候充分利用云平台的各种特点是基于云平台设计的一个重要因素。在这个演讲中,我们将以亚马逊AWS云平台为例,讨论如何设计一个高可用应用。我们先会对AWS的服务进行高可用性的分类,并从高可用角度对典型服务进行介绍,然后依次讨论高可用设计的5大常见设计原则,并结合亚马逊云科技的相关服务依次进行架构设计分析。

2014-05-29

亚马逊云科技云服务入门介绍_方国伟

第一讲:亚马逊云科技与服务入门介绍 § 了解亚马逊云科技云计算概览及价值主张 § 了解亚马逊云科技云服务服务的特点:灵活、高效、弹性以及安全性 § 了解亚马逊云科技云服务的基础知识,包括亚马逊云科技的计算、存储、网络、数据库和大数据等服务概况

2014-05-29

方国伟:亚马逊云科技云服务的发展和创新

这部分讲述亚马逊云科技的发展背景和目前进展情况,主要包含三个方面:首先是介绍亚马逊云科技云服务的整体服务情况以及她的最新发展状况;然后以与亚马逊云科技相关的创新为例讲述亚马逊独特的创新文化;最后讲述亚马逊云科技如何针对大型企业的需求而推出的各种企业级服务和支持,从而满足不同类型客户的各种需求。

2014-05-29

Netflix在亚马逊云科技上的应用和创新

从2009年开始,Netflix逐渐把她的IT系统迁移到亚马逊云科技云服务,并开始进行业务转型——从DVD租赁演变为在线视频供应商。目前,在高峰期间Netflix的互联网下载流量已经占到北美地区的三分之一,而支撑Netflix的整个IT系统基本上构建在亚马逊云科技云上。

2014-05-29

方国伟:基于亚马逊云科技的云灾备设计

通过基于亚马逊云科技云服务构建灵活、低成本的灾备方案,给企业带来一个保障业务连续性的创新方法。有研究表明,相对于传统灾备方案,基于云计算的灾备方案可以帮助企业最多节约85%的成本。在这个讲座中,我们首先讨论与灾备方案相关的亚马逊云科技基础服务,包括计算、存储、网络和数据库服务;然后我们会从技术的角度讨论常见的灾备架构以及它们的具体实现方式,从备份/恢复、“信号灯”方式、热备方式到多站点方式。

2014-05-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除