Deriving the Poisson Distribution from the Binomial Distribution

转载 2015年07月10日 17:02:20
At first glance, the binomial distribution and the Poisson distribution seem unrelated. But a closer look reveals a pretty interesting relationship. It turns out the Poisson distribution is just a special case of the binomial -- where the number of trials is large, and the probability of success in any given one is small. 

In this post I'll walk through a simple proof showing that the Poisson distribution is really just the binomial with n approaching infinity and p approaching zero. 

The Proof
The binomial distribution works when we have a fixed number of events n, each with a constant probability of success p. Imagine we don't know the number of trials that will happen. Instead, we only know the average number of successes per time period. So we know the rate of successes per day, but not the number of trials n or the probability of success p that led to that rate. 

Define a number . Let this be the rate of successes per day. It's equal to np. That's the number of trials n -- however many there are -- times the chance of success p for each of those trials. Think of it like this: if the chance of success is p and we run n trials per day, we'll observe np successes per day on average. That's our observed success rate lambda. 

Recall that the binomial distribution looks like this: 

As mentioned above, let's define lambda as follows:

Solving for p, we get:

What we're going to do here is substitute this expression for p into the binomial distribution above, and take the limit as n goes to infinity, and try to come up with something useful. That is,

Pulling out the constants  and  and splitting the term on the right that's to the power of (n-k) into a term to the power of n and one to the power of -k, we get

Now let's take the limit of this right-hand side one term at a time. We'll do this in three steps. The first step is to find the limit of 

In the numerator, we can expand n! into n terms of (n)(n-1)(n-2)...(1). And in the denominator, we can expand (n-k) into n-k terms of (n-k)(n-k-1)(n-k-2)...(1). That is,

Written this way, it's clear that many of terms on the top and bottom cancel out. The (n-k)(n-k-1)...(1) terms cancel from both the numerator and denominator, leaving the following:

Since we canceled out n-k terms, the numerator here is left with k terms, from n to n-k+1. So this has k terms in the numerator, and k terms in the denominator since n is to the power of k. Expanding out the numerator and denominator we can rewrite this as:

This has k terms. Clearly, every one of these k terms approaches 1 as n approaches infinity. So we know this portion of the problem just simplifies to one. So we're done with the first step. 

The second step is to find the limit of the term in the middle of our equation, which is 

Recall that the definition of e = 2.718... is given by the following:

Our goal here is to find a way to manipulate our expression to look more like the definition of e, which we know the limit of. Let's define a number x as . Now let's substitute this into our expression and take the limit as follows:

This terms just simplifies to e^(-lambda). So we're done with our second step. That leaves only one more term for us to find the limit of. Our third and final step is to find the limit of the last term on the right, which is

This is pretty simple. As n approaches infinity, this term becomes 1^(-k) which is equal to one. And that takes care of our last term. 

Putting these three results together, we can rewrite our original limit as

This just simplifies to the following:

This is equal to the familiar probability density function for the Poisson distribution, which gives us the probability of k successes per period given our parameter lambda. So we've shown that the Poisson distribution is just a special case of the binomial, in which the number of n trials grows to infinity and the chance of success in any particular trial approaches zero. And that completes the proof.


1. 下载最新版的nVidia驱动,命名为。 2.编辑blacklist.conf。 sudo...
  • qp120291570
  • qp120291570
  • 2013年07月29日 20:08
  • 9604


windows10下 CUDA+Keras+ TensorFlow的安装可以参考: 感谢作者分享~~ 目前(2016.03....
  • eric_dj
  • eric_dj
  • 2017年03月01日 17:32
  • 2312

Python 安装 第三方库的安装技巧

Python 安装 第三方库的安装技巧Windows 10 64位。 Python 3.5.0:1. 使用 pip 命令行工具在线下载你需要的第三方库 2. 手动下载 第三方库,再使用 `pip`...
  • github_35160620
  • github_35160620
  • 2016年08月14日 11:31
  • 30993

统计学 分布篇 - Poisson Distribution(泊松分布)

泊松分布: 是离散随机分布的一种; 通常被使用在估算在 一段特定时间/空间内 发生事件 数量的概率. 使用泊松分布需要满足的前提条件: 在 两个 相同大小/长度的 时间/空间内,...
  • YtdxYHZ
  • YtdxYHZ
  • 2016年06月14日 23:48
  • 5047

6. Your dev and test sets should come from the same distribution 你的开发集和测试集应该来自同一分布(《MACHINE LEARNING

  • 2016年12月09日 03:05
  • 1596


  • fengbingchun
  • fengbingchun
  • 2017年06月27日 10:18
  • 2586

【非参数贝叶斯学习系列】Dirichlet distribution学习笔记

Dirichlet distribution是一个很重要 的分布,其是Dirichlet process 存在的基础,DP本身是得出非参贝叶斯估计中的求得先验分布的重要方法。这个分布本身其实是Beta...
  • sweetrryy
  • sweetrryy
  • 2011年05月22日 15:56
  • 5001

C++ - 随机生成器 伯努利分布(bernoulli distribution) 的 详解 及 代码

随机生成器 伯努利分布(bernoulli distribution) 的 详解 及 代码 本文地址:
  • u012515223
  • u012515223
  • 2013年12月15日 17:42
  • 4705


问题描述 今天准备打包上传AppStore,结果Xcode报以下错误: Missing iOS Distribution signing identity for XXXXXX 查看证书后发...
  • mygrilzhuyulin
  • mygrilzhuyulin
  • 2016年02月16日 14:23
  • 1219

统计学 分布篇 - Hypergeometric Distribution(超几何分布)

超几何分布: 是 离散随机分布的一种. 它描述的是  从 n 中 拿 k 个成功的事件的概率( 不放回, 不放回意味着该事件是非独立事件), 其中在 N 中一共有 K 个成功事件.   n 为 样本...
  • YtdxYHZ
  • YtdxYHZ
  • 2016年06月15日 04:35
  • 1259
您举报文章:Deriving the Poisson Distribution from the Binomial Distribution