数据挖掘十大算法之决策树详解(1)

本文详细介绍了数据挖掘中的决策树算法,包括决策树的基础知识、Hunt算法、Gini测度与划分标准。通过实例解释了如何构建决策树,讨论了如何选择最佳划分属性,以及在多分类和特征值连续情况下的处理方法。内容涵盖了C4.5和CART等知名决策树算法,适合对数据挖掘感兴趣的读者深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在2006年12月召开的 IEEE 数据挖掘国际会议上(ICDM, International Conference on Data Mining),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参见文献【1】。本博客已经介绍过的位列十大算法之中的算法包括:

  • [1] k
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值