白马负金羁

数据挖掘 | 统计分析 | 图像处理 | 程序设计

排序:
默认
按更新时间
按访问量

特惠购书通道...

  根据合同,图书每次加印都会赠送原作者两本作为样书。但同样一本书,有好多本也是一种困扰。错配的资源很难发挥其应有的价值,只能压在箱底睡大觉。博主希望这些书能够找到他们真正的主公 ! 《图像处理中的数学修炼》 《数字图像处理:原理与实践(MATLAB)》 《R语言实战:机器学习与数据分析》...

2018-03-16 14:01:00

阅读数:2187

评论数:15

图像处理中的数学修炼的特别说明及其勘误表

图像处理中的数学修炼已经积累了大量读者。但随着读者数量的增加,近来有读者在跟我交流和咨询的时候表现出来许多在读书和用书时的困惑。这里我特别把这本书的一些情况和大家可能有的误解在做一个澄清,希望大家对这本书的结构、作用、意义和阅读的方法有一个了解。如果你是这本书的读者或者准备购买本书的潜在读者,请务...

2017-01-18 17:00:12

阅读数:8274

评论数:119

基于字典学习的图像去噪研究与实践

机器学习在图像处理中有非常多的应用,运用机器学习(包括现在非常流行的深度学习)技术,很多传统的图像处理问题都会取得相当不错的效果。本文以机器学习中的字典学习(Dictionary Learning)为例,来展示其在图像去噪方面的应用

2018-07-01 15:18:12

阅读数:1876

评论数:4

Keras实例教程(4)之迁移学习

迁移学习(Transfer Learning)是机器学习中的一个重要研究话题,也是在实践中具有重要价值的一类技术,其目标是将从一个环境中学到的知识用来帮助新环境中的学习任务。本文以一个具体的Kaggle比赛项目为例,介绍在Keras中利用迁移学习的技术和VGG16模型来实现图像分类

2018-06-20 16:20:54

阅读数:1106

评论数:1

Keras实例教程(3)

Keras中提供了一种基于函数式编程思想的神经网络组建方法,我们称其为functional API。如果你对类似Haskell这样的函数式编程语言比较熟悉的话,那么上手Keras中的functional API是非常容易的。更重要的是,functional API允许你在Keras中以极其简便且直...

2018-06-16 12:12:49

阅读数:975

评论数:0

在Keras中使用VGG进行物体识别

Keras 作为当前深度学习框架中的四大天王之一,使用起来是极其简便的,它所提供的各种友好而灵活的API,即使对于新手而言,相比于TensorFlow也非常容易上手。更特别的是,Keras中还预置了多种已经训练好的、非常流行的神经网络模型,使用者可以十分方便地以他山之石来解决自己的问题

2018-06-15 08:00:42

阅读数:1876

评论数:1

LLVM编写Pass对程序进行obfuscate

对程序进行obfuscate在软件安全领域有诸多应用,其直接的目的就是对那些试图进行逆向工程的努力带来一些困扰。本文将介绍如何通过在LLVM中加入相关Pass的方法实现对程序的扰乱

2018-06-03 15:54:30

阅读数:366

评论数:0

使用Git连接到GitHub并进行版本管理

Git是一个开源的分布式版本控制系统,可以有效、高速的处理从很小到非常大的项目版本管理。而GitHub则是一个面向开源及私有软件项目的托管平台,或者说它是一个在线的项目版本管理系统,它为基于git的版本控制和项目托管提供了全面的支持。Git和GitHub可以紧密配合实现高效便捷的版本控制

2018-05-19 13:53:57

阅读数:559

评论数:8

详解多维标度法(MDS,Multidimensional scaling)

在机器学习中,多维标度法(multidimensional scaling,MDS)属于是Manifold Learning里面一种经典方法,它也是一种在低维空间展示“距离”数据结构的多元数据分析技术,是一种将多维空间的研究对象( 样本 或 变量 ) 简化到低维空间进行定位、分析和归类,同时又保留...

2018-03-04 05:53:04

阅读数:2994

评论数:2

SVD与PCA之间的关系详解

PCA(principal component analysis)和SVD(Singular value decomposition)是两种常用的降维方法,在机器学习等领域有广泛的应用,而且二者之间还有着非常紧密的联系

2018-03-01 11:27:56

阅读数:1933

评论数:0

主成分分析(PCA)与Kernel PCA

主成分分析(Principal Component Analysis,PCA), 是一种统计方法,它可以用来进行降维或压缩。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分,本文主要介绍PCA以及核化的PCA(Kernel PCA)

2018-03-01 03:21:13

阅读数:6506

评论数:1

机器学习中的核方法(Kernel Method)

核方法是机器学习领域中的一种重要技术。其优势在于允许研究者在原始数据对应的高维空间使用线性方法来分析和解决问题,且能有效地规避维数灾难。核方法最具特色之处在于其虽等价于先将原数据通过非线性映射变换到一高维空间后的线性特征抽取手段,但其不需要执行相应的非线性变换,也不需要知道究竟选择何种非线性映射关系

2018-02-26 08:21:22

阅读数:3465

评论数:1

最大熵模型(MaxEnt):万法归宗(下)

熵这个概念在机器学习中被用到的地方很多,例如决策树、最大熵模型等。最大熵模型利用最大熵原理来选择或构建最佳分类器。最大熵模型(MaxEnt)与多元逻辑回归、Softmax等本质上是统一的,而且在最大熵学习算法的推导中还会综合地用到广义拉格朗日乘数法等多种数学技巧

2018-01-07 14:40:08

阅读数:960

评论数:7

最大熵模型(MaxEnt):万法归宗(上)

熵这个概念在机器学习中被用到的地方很多,例如决策树、最大熵模型等。最大熵模型利用最大熵原理来选择或构建最佳分类器。最大熵模型(MaxEnt)与多元逻辑回归、Softmax等本质上是统一的,而且在最大熵学习算法的推导中还会综合地用到广义拉格朗日乘数法等多种数学技巧

2018-01-07 11:55:58

阅读数:2824

评论数:0

在LLVM中编写Backend Pass的详细教程(1)

LLVM是一个自由软件项目,它是一种编译器基础设施,以C++写成。当前,LLVM已经发展成为被用于开发从编译器前端到后端的一套模块及可重用的编译器及工具链技术的集合。本文将通过一个具体的例子来介绍如何编写BackEnd Pass

2017-12-31 16:35:19

阅读数:795

评论数:1

LeetCode中的动态规划题目解答(3)

动态规划是一种非常重要的算法设计思想。历史上有很多著名的算法都是基于这种思想设计而来的,例如:Needleman–Wunsch算法、CYK算法、FFT算法、维特比算法等等。动态规划的核心思想有两个:首先是将一个大问题拆解为若干子问题;其次是将曾经计算过的结果储存起来以备多次使用

2017-12-29 16:49:31

阅读数:593

评论数:0

LeetCode中的动态规划题目解答(2)

动态规划是一种非常重要的算法设计思想。历史上有很多著名的算法都是基于这种思想设计而来的,例如:Needleman–Wunsch算法、CYK算法、FFT算法、维特比算法等等。动态规划的核心思想有两个:首先是将一个大问题拆解为若干子问题;其次是将曾经计算过的结果储存起来以备多次使用

2017-12-29 10:52:30

阅读数:507

评论数:0

LeetCode中的两道动态规划题目

动态规划是一种非常重要的算法设计思想。历史上有很多著名的算法都是基于这种思想设计而来的,例如:Needleman–Wunsch算法、CYK算法、FFT算法、维特比算法等等。动态规划的核心思想有两个:首先是将一个大问题拆解为若干子问题;其次是将曾经计算过的结果储存起来以备多次使用

2017-12-28 13:43:40

阅读数:715

评论数:0

选择永远比努力更重要!

选择永远比努力更重要。如果一个行业正处在起飞阶段,朝气蓬勃,那么这样的一类行业能够给你提供的机遇和可能都是无限的。就像有人说:当龙卷风来的时候,猪都能上天。相反,如果你所处的行业正逐渐没落,那么即使你再怎么优秀、再怎么努力,也不可能跟大势相抗衡。就像一辆即将到站的列车,无论是身份多么尊贵的乘客,也...

2017-12-25 06:12:16

阅读数:2972

评论数:4

有用的Linux命令整理(不断积累中)

当你进入了 Linux 的世界,在下载、安装 了某个 Linux 发行版,体验了 Linux 桌面并安装了一些你喜爱和需要的软件之后,应该去了解下 Linux 真正的魅力所在:命令行。每一个 Linux 命令其实就是一个程序,借助这些命令,我们可以办到非常多的事情

2017-12-22 09:12:30

阅读数:1370

评论数:0

提示
确定要删除当前文章?
取消 删除