Topcoder SRM 687 div2

Topcoder SRM 687 div2
通过数:2
250:

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>

using namespace std;

class Quorum {
public:
    int count(vector <int>, int);
};

int Quorum::count(vector <int> arr, int k) {
    sort(arr.begin(), arr.end());
    int res = 0;
    for(int i = 0 ; i < min(k, (int)arr.size()) ; i++)
        res += arr[i];
    return res;
}

<%:testing-code%>
//Powered by [KawigiEdit] 2.0!

500:
加一个vector用来回溯就好

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>

using namespace std;

class Quacking {
public:
    int quack(string);
};
string str = "quack";
int Quacking::quack(string s) {
    int n = s.size();
    int res = 0;
    int vis[5000];
    for(int i = 0 ; i < n ; i++) {
//        printf("i = %d\n", i);
        if(vis[i] == 1) continue;
        else if(s[i] != 'q') return -1;
        int num = 0;
        vector<int>rev;
        for(int j = i ; j < n ; j++) {
            if(vis[j] == 1) continue;
            if(s[j] == str[num]) {
                num++, vis[j] = 1, rev.push_back(j);//, printf("%d ", j);
            }
            if(num == 5) {
                rev.clear();
                num = 0;
            }
        }
//        puts("");
        for(int j = 0 ; j < (int)rev.size() ; j++) vis[rev[j]] = 0;
        res++;
    }
    for(int i = 0 ; i < n ; i++) if(vis[i] == 0) return -1;
    return res;
}

<%:testing-code%>
//Powered by [KawigiEdit] 2.0!

1000:
打死想不到是概率DP
转换后发现原式表示的是f(p,k)表示前k-1天均未完成,第k天完成的概率
那么,每天完成的概率就是1/p
Dp[i][j]表示到达(i,j)状态时,第一个任务消耗时间严格小于第一个任务的概率
初始化dp[i][0] = 0, dp[0][i!=0] = 1

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>

using namespace std;

class Queueing {
public:
    double probFirst(int, int, int, int);
};
const int MAXN = 1000 + 5;
double dp[MAXN][MAXN];
double Queueing::probFirst(int len1, int len2, int p1, int p2) {
    double q1 = 1.0 / (1.0 * p1);
    double q2 = 1.0 / (1.0 * p2);
    for(int i = 0 ; i <= len1 ; i++) {
        for(int j = 0 ; j <= len2 ; j++) {
            if(j == 0) dp[i][j] = 0;
            else if(i == 0) dp[i][j] = 1;
            else {
                double temp1 = (q1) * (q2) * dp[i - 1][j - 1];
                double temp2 = (1 - q1) * q2 * dp[i][j - 1];
                double temp3 = (q1) * (1 - q2) * dp[i - 1][j];
                dp[i][j] = (temp1 + temp2 + temp3) / (1.0 - (1 - q1) * (1 - q2));
            }
        }
    }
    return dp[len1][len2];
}

<%:testing-code%>
//Powered by [KawigiEdit] 2.0!
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值