LaoYuanPython
码龄3年
  • 3,060,181
    被访问
  • 1,203
    原创
  • 57
    排名
  • 66,654
    粉丝
关注
提问 私信

个人简介:CSDN 2020年博客之星TOP3。博客主要关注音视频剪辑、数字图像处理、图形界面开发等Python相关知识! 另有高数、图像处理、OpenCV、Python以及架构类等电子书,如需要请扫描博客左下部二维码加微公号咨询。

  • 加入CSDN时间: 2019-04-12
博客简介:

老猿Python

博客描述:
CSDN 2020博客之星季军。 如需高数、图像处理、OpenCV、Python等电子书请扫博客左边二维码加微公号
查看详细资料
  • 9
    领奖
    总分 9,379 当月 451
个人成就
  • 2020年博客之星Top3
  • 博客专家认证
  • 获得6,390次点赞
  • 内容获得3,890次评论
  • 获得7,634次收藏
创作历程
  • 25篇
    2022年
  • 172篇
    2021年
  • 481篇
    2020年
  • 564篇
    2019年
成就勋章
TA的专栏
  • OpenCV-Python初学者疑难问题集
    付费
    25篇
  • 使用PyQt开发图形界面Python应用
    付费
    61篇
  • Python爬虫入门
    付费
    22篇
  • moviepy音视频开发专栏
    付费
    41篇
  • OpenCV-Python图形图像处理
    82篇
  • PyQt+moviepy音视频剪辑实战
    85篇
  • PyQt入门知识
    12篇
  • Python基础教程
    10篇
  • 爬虫
    29篇
  • 图像处理基础知识
    40篇
  • n行Python代码系列
    18篇
  • 老猿Python
    1054篇
  • 老猿学5G
    36篇
  • 人工智能数学基础
    51篇
  • 零基础学区块链
    11篇
  • 老猿Python精品文章
    14篇
  • 计算机常识
    19篇
  • 互联网知识
    20篇
  • 原力计划文章
    20篇
TA的推广
兴趣领域 设置
  • 服务器
    linux
请关注老猿Python微信公号
addfa1604fd5a9ea244003c6448c31ff.png
如对文章内容存在疑问,可在博客评论区留言,或关注: 老猿Python 微信公号发消息咨询。
好友链接

CSDN大佬:Eastmount

CSDN1哥:1_bit

Python大佬:李元静

AI大佬:herosunly的博客 ​

Java大佬:简简单单OnlineZuozuo

Java实战项目大佬:软件老王

  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

人工智能数学基础--概率与统计5:独立随机变量和变量替换

本文介绍了离散和连续独立随机变量的概念,以及存在一一映射关系的两个随机变量或两组随机变量之间的概率密度函数之间的关系。f(x,y)=f1(x)f2(y)     (28)相反地,若对所有的x和y,联合概率函数f(x,y)能够表成一个变量x的函数与一个变量y的函数的乘积(则它们是X和Y的边缘概率函数),则X和Y是独立的。若f(x,y)不能这样表示,则X和Y是不独立的。若X和Y是连续的随机变量,对所有的x和y事件X.
原创
发布博客 2022.05.16 ·
58 阅读 ·
2 点赞 ·
1 评论

matplotlib的imshow在Python shell IDLE环境无法显示图像问题

文介绍了Python shell IDLE环境下显示matplotlib图像的解决办法。
原创
发布博客 2022.04.27 ·
1828 阅读 ·
3 点赞 ·
3 评论

人工智能数学基础--概率与统计4:联合分布与边缘分布

概率密度函数都同时作用于多个随机变量的概率分布被称为**联合概率分布**(joint probability distribution),联合概率分布可以看做是一组变量的概率分布,如果需要了解其中一个子集的概率分布,则就是边缘概率分布。对于离散随机变量,某个子集的边缘概率计算就是将带该子集变量的所有其他子集可能取值求和,对于连续随机变量,则是对该子集变量外的其他子集求积分。
原创
发布博客 2022.04.14 ·
2901 阅读 ·
2 点赞 ·
3 评论

人工智能数学基础--概率与统计3:随机变量与概率分布

本文介绍了概率统计中的随机变量及概率分布的概念,包括离散随机变量和连续随机变量的概率函数及分布函数,都是概率统计的入门知识。
原创
发布博客 2022.04.10 ·
1051 阅读 ·
1 点赞 ·
1 评论

50万奖金池:欢迎全球学子报名参加中国移动第二届梧桐杯大数据应用创新大赛湖北赛道

一、报名规则1、大赛面向高校在校学生,参赛人员的年龄、国籍不限,每个团队1-5人,允许跨校组队。2、团队成员变更:初赛进入B榜阶段后,不允许再变更成员。特殊情况联系客服请示主办方决定。复赛或决赛阶段变更成员,须不晚于正式比赛开赛3周前提出变更申请,说明理由,主办方同意后方允许变更。3、报名截止时间:2022年5月7日。如有调整,以比赛页面最新公示为准。4、每名参赛人员仅允许加入1支参赛队伍。初赛阶段每支队伍可同时报名多个赛道并提交作品,但在晋级阶段,满足晋级条件的团队只能选择1个赛题进行晋级,其他赛
原创
发布博客 2022.04.06 ·
1941 阅读 ·
3 点赞 ·
3 评论

人工智能数学基础--概率与统计2:排列组合的表示方法、二项式系数及斯特林近似

本文介绍了概率统计排列组合、二项式系数知识以及斯特林近似表示,都是概率统计的入门知识。
原创
发布博客 2022.03.20 ·
5297 阅读 ·
4 点赞 ·
3 评论

OpenCV-Python 图像平滑处理3:boxFilter函数详解及均值滤波案例

本文介绍了图像平滑处理及均值滤波等基础概念,并详细介绍了卷积函数boxFilter的Python语法及参数,并用之进行了对图像的均值滤波平滑处理,可以看到其归一化的模糊化处理结果与filter2D、blur函数完全一样,实际上它是filter2D一种特定场景的应用,而blur又是boxFilter函数归一化处理的特例。
原创
发布博客 2022.03.15 ·
405 阅读 ·
3 点赞 ·
2 评论

人工智能数学基础--概率与统计1:随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则

本文介绍了概率统计包括随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则在内的一些基础知识,都是概率统计的入门知识,要理解起来还是比较容易的,但是熟练掌握应用还需要多应用。
原创
发布博客 2022.03.14 ·
2774 阅读 ·
3 点赞 ·
1 评论

OpenCV-Python 图像平滑处理2:blur函数及滤波案例

本文介绍了图像平滑处理及均值滤波等基础概念,并详细介绍了卷积函数blur的Python语法及参数,并用之进行了对图像的均值滤波平滑处理,可以看到其模糊化处理结果与filter2D完全一样,实际上它是filter2D一种特定场景的应用。
原创
发布博客 2022.03.12 ·
887 阅读 ·
4 点赞 ·
2 评论

卷积处理过程模拟:用Python实现OpenCV函数filter2D等效的卷积功能

本文介绍了用Python、numpy矩阵运算以及OpenCV-Python的图像基础操作模拟filter2D实现一个卷积程序,提供了实现思路和具体的案例代码,并将该程序实现的图像卷积结果和OpenCV filter2D函数的卷积结果进行了比对,可以看到二者结果完全相等。通过该程序可以完全了解卷积处理的过程。
原创
发布博客 2022.03.09 ·
3740 阅读 ·
3 点赞 ·
1 评论

OpenCV-Python 图像平滑处理1:卷积函数filter2D详解及用于均值滤波的案例

本文介绍了图像平滑处理及均值滤波等基础概念,并详细介绍了卷积函数filter2D的Python语法及参数,并用之进行了对图像的均值滤波处理,可以看到卷积核元素值以及相关参数如delta等对卷积处理结果的影响。
原创
发布博客 2022.03.09 ·
4899 阅读 ·
2 点赞 ·
1 评论

数字图像处理学习--导数运算与锐化空间滤波

本文介绍了图像锐化空间滤波器的基本概念,定义了数字图像处理一阶导和二阶导的公式,以及锐化处理与数字图像函数导数的关系,通过介绍,可以理解数字图像的二阶导数比较适合图像锐化处理。
原创
发布博客 2022.03.07 ·
2680 阅读 ·
3 点赞 ·
3 评论

OpenCV-Python学习的时间过长,前面学的东西发现已经忘记得差不多了,要复习一下了。

发布动态 2022.03.06

数字图像处理中一元函数f(x)的二阶导数=f(x+1)+f(x-1)-2f(x)的由来

介绍数字图中f(x)的二阶导数的由来。
原创
发布博客 2022.03.06 ·
217 阅读 ·
2 点赞 ·
1 评论

灰度斜坡intensity ramp和灰度台阶intensity step的区别

介绍灰度斜坡和灰度台阶的概念及区别。
原创
发布博客 2022.03.05 ·
220 阅读 ·
3 点赞 ·
4 评论

一阶导数/微分和二阶导数/微分算子在图像锐化处理方面的区别

一阶导数/微分和二阶导数/微分算子对图像处理的区别:斜坡面上,灰度线性增加,因灰度持续增加因此一阶导数一直不为0 ;二阶导数只有终点和起点不为0;一阶导数产生较粗的边缘,只要灰度有变化都会显现;二阶导数则细得多,只有灰度有强烈变化,灰度变化非线性的地方才显现;一阶导数处理一般对灰度阶梯有较强的响应,因为灰度阶梯处的灰度值变化范围大,因此一级导数值就大;二阶导数求图像灰度变化导数的导数,反映的是变化后的起伏,变化幅度不一致的地方才有响应,对图像中灰度变化强烈的地方很敏感,从而可以突出图像的纹理结构,.
原创
发布博客 2022.03.05 ·
361 阅读 ·
3 点赞 ·
2 评论

微分、导数的概念不容易分区,翻译也经常出现问题,记一下: 1. 微分:英文 differential,函数f(x)的微分表示为df(x),df(x)=f'(x)dx; 2. 导数:英文 derivative,函数f(x)的导数表示为f'(x),f'(x)=df(x)/dx,因此导数又称为**微商**; 3. 微分运算:英文 differentiation,通常是指求导、求微分的运算。

发布动态 2022.03.05

刚才收到某平台的短信验证码,发现非要点开短信才能看到验证码,为了方便客户,我们公司的所有验证码都已经放在短信内容的最前面,根本不需要点开短信,在通知栏就能看到,为我们公司赞一个!

发布动态 2022.03.04

昨晚想明白了一个问题,赶早发了篇博文,够勤快的吧?

发布动态 2022.03.04

为什么说数字图像的一阶微分为f(x+1)-f(x)?

本文分析了数字图像处理中为什么一阶微分为f(x+1)-f(x)的由来。
原创
发布博客 2022.03.04 ·
974 阅读 ·
3 点赞 ·
5 评论
加载更多