人工智能数学基础--概率与统计5:独立随机变量和变量替换 本文介绍了离散和连续独立随机变量的概念,以及存在一一映射关系的两个随机变量或两组随机变量之间的概率密度函数之间的关系。f(x,y)=f1(x)f2(y) (28)相反地,若对所有的x和y,联合概率函数f(x,y)能够表成一个变量x的函数与一个变量y的函数的乘积(则它们是X和Y的边缘概率函数),则X和Y是独立的。若f(x,y)不能这样表示,则X和Y是不独立的。若X和Y是连续的随机变量,对所有的x和y事件X.
人工智能数学基础--概率与统计4:联合分布与边缘分布 概率密度函数都同时作用于多个随机变量的概率分布被称为**联合概率分布**(joint probability distribution),联合概率分布可以看做是一组变量的概率分布,如果需要了解其中一个子集的概率分布,则就是边缘概率分布。对于离散随机变量,某个子集的边缘概率计算就是将带该子集变量的所有其他子集可能取值求和,对于连续随机变量,则是对该子集变量外的其他子集求积分。
50万奖金池:欢迎全球学子报名参加中国移动第二届梧桐杯大数据应用创新大赛湖北赛道 一、报名规则1、大赛面向高校在校学生,参赛人员的年龄、国籍不限,每个团队1-5人,允许跨校组队。2、团队成员变更:初赛进入B榜阶段后,不允许再变更成员。特殊情况联系客服请示主办方决定。复赛或决赛阶段变更成员,须不晚于正式比赛开赛3周前提出变更申请,说明理由,主办方同意后方允许变更。3、报名截止时间:2022年5月7日。如有调整,以比赛页面最新公示为准。4、每名参赛人员仅允许加入1支参赛队伍。初赛阶段每支队伍可同时报名多个赛道并提交作品,但在晋级阶段,满足晋级条件的团队只能选择1个赛题进行晋级,其他赛
OpenCV-Python 图像平滑处理3:boxFilter函数详解及均值滤波案例 本文介绍了图像平滑处理及均值滤波等基础概念,并详细介绍了卷积函数boxFilter的Python语法及参数,并用之进行了对图像的均值滤波平滑处理,可以看到其归一化的模糊化处理结果与filter2D、blur函数完全一样,实际上它是filter2D一种特定场景的应用,而blur又是boxFilter函数归一化处理的特例。
人工智能数学基础--概率与统计1:随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则 本文介绍了概率统计包括随机试验、样本空间、事件、概率公理定理以及条件概率和贝叶斯法则在内的一些基础知识,都是概率统计的入门知识,要理解起来还是比较容易的,但是熟练掌握应用还需要多应用。
OpenCV-Python 图像平滑处理2:blur函数及滤波案例 本文介绍了图像平滑处理及均值滤波等基础概念,并详细介绍了卷积函数blur的Python语法及参数,并用之进行了对图像的均值滤波平滑处理,可以看到其模糊化处理结果与filter2D完全一样,实际上它是filter2D一种特定场景的应用。
卷积处理过程模拟:用Python实现OpenCV函数filter2D等效的卷积功能 本文介绍了用Python、numpy矩阵运算以及OpenCV-Python的图像基础操作模拟filter2D实现一个卷积程序,提供了实现思路和具体的案例代码,并将该程序实现的图像卷积结果和OpenCV filter2D函数的卷积结果进行了比对,可以看到二者结果完全相等。通过该程序可以完全了解卷积处理的过程。
OpenCV-Python 图像平滑处理1:卷积函数filter2D详解及用于均值滤波的案例 本文介绍了图像平滑处理及均值滤波等基础概念,并详细介绍了卷积函数filter2D的Python语法及参数,并用之进行了对图像的均值滤波处理,可以看到卷积核元素值以及相关参数如delta等对卷积处理结果的影响。
数字图像处理学习--导数运算与锐化空间滤波 本文介绍了图像锐化空间滤波器的基本概念,定义了数字图像处理一阶导和二阶导的公式,以及锐化处理与数字图像函数导数的关系,通过介绍,可以理解数字图像的二阶导数比较适合图像锐化处理。
一阶导数/微分和二阶导数/微分算子在图像锐化处理方面的区别 一阶导数/微分和二阶导数/微分算子对图像处理的区别:斜坡面上,灰度线性增加,因灰度持续增加因此一阶导数一直不为0 ;二阶导数只有终点和起点不为0;一阶导数产生较粗的边缘,只要灰度有变化都会显现;二阶导数则细得多,只有灰度有强烈变化,灰度变化非线性的地方才显现;一阶导数处理一般对灰度阶梯有较强的响应,因为灰度阶梯处的灰度值变化范围大,因此一级导数值就大;二阶导数求图像灰度变化导数的导数,反映的是变化后的起伏,变化幅度不一致的地方才有响应,对图像中灰度变化强烈的地方很敏感,从而可以突出图像的纹理结构,.