Data Mining for Global Change: Furthering Science, Knowledge

转载 2013年12月04日 04:09:27

The following is a special contribution to this blog byKarsten Steinhaeuser, a Research Associate in the Department of Computer Science and Engineering at the University of Minnesota involved with a National Science Foundation Expeditions in Computing on Understanding Climate Change: A Data Driven Approach and the Planetary Skin Institute. Karsten describes the Expeditions effort here.

Climate change is a defining environmental challenge facing our planet as rising temperatures, increased severity and frequency of extreme events, and transformation of the global ecosystems are placing unprecedented stress on society, natural resources and man-made infrastructure.

A team of researchers led by Vipin Kumar at the University of Minnesota is exploring ways in which computer scientists can help answer questions surrounding climate change, ecosystem health and global sustainability. The effort is driven by two major initiatives: an NSF Expeditions in Computing on “Understanding Climate Change: A Data Driven Approach” and the GOPHER project, which is affiliated with the Planetary Skin Institute – named as one of Time Magazine’s Best 50 Inventions of 2009 and recently highlighted in The Economist.

Monitoring forests: Seeing the world for the trees: An international deal on deforestation makes it ever more important to measure the Earth’s woodlands [image courtesy Dave Simonds/The Economist].

The overarching goal of these research activities is to provide innovative, computationally-driven solutions to advance our understanding of the global climate and ecosystems, monitor their current state and improve projections of climate change and its impact on natural and human-made systems. Data driven approaches that have been highly successful in other scientific disciplines hold significant potential for application in environmental sciences. This work addresses key challenges by developing methods that take advantage of the wealth of climate and ecosystem data available from satellite and ground-based sensors, the observational record for atmospheric, oceanic and terrestrial processes, and physics-based climate model simulations. Currently, the focus is on several broad areas including novel methods for analyzing historical climate data, various aspects of modeling tropical cyclone activity, multi-model ensemble methods for evaluating and combining simulation output from multiple climate models, and change detection in space-time data.

In addition to addressing specific science questions, however, these projects also aim to facilitate interaction between computer scientists and researchers in the climate and environmental sciences, foster and strengthen interdisciplinary collaborations and build a community at this interface of computer science and the climate and environmental sciences. For instance, members of the team have been involved in the organization of recent workshops on this topic, including theFirst Workshop on Understanding Climate Change from Data, theFirst International Workshop on Climate Informatics, and the IEEE International workshop on Knowledge Discovery from Climate Data.

Editor’s note:  The kinds of successful interdisciplinary collaborations Karsten describes here are consistent with those that NSF is attempting to foster through its variousSEES solicitations described in a separate blog post earlier today.


source: http://www.cccblog.org/2011/09/26/data-mining-for-global-change-furthering-science-knowledge/

ISI Web of Knowledge 22个论文检索技巧汇总

Dr. Garfield 1955年在 Science 发表论文提出将引文索引作为一种新的文献检索与分类工具的理念。将一篇文献作为检索字段从而跟踪一个Idea的发展过程。 “一个有效的索引必...
  • lemoncyb
  • lemoncyb
  • 2013年12月14日 21:41
  • 1331

Machine Learning and Data Mining——2. 机器学习学习路线与资料

机器学习研究的是计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构使之不断改善自身。简单一点说,就是计算机从数据中学习出规律和模式,以应用在新数据上做预测的任务。本文为转载文...
  • u010757264
  • u010757264
  • 2016年03月05日 10:24
  • 1074

DataMining学习2_数据挖掘十大经典算法

数据挖掘十大经典算法  一、 C4.5  C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了...
  • wang_zhenwei
  • wang_zhenwei
  • 2016年09月14日 10:26
  • 1407

【强烈推荐】:关于系统学习数据挖掘(Data Mining)的一些建议!!

微信公众号 关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 关于数据挖掘 提到收据挖掘(Data Mining...
  • Mbx8X9u
  • Mbx8X9u
  • 2017年12月03日 00:00
  • 113

MLAPP学习笔记-Data Mining和Machine Learning的区别及延伸

MLAPP学习笔记-Data Mining和Machine Learning的区别及延伸 一、写在前面   从上学开始,都习惯把笔记记录在纸张上,大多数是觉得可以偶尔练练字什么的。...
  • zwl_123
  • zwl_123
  • 2016年07月25日 14:49
  • 1602

数据挖掘开源软件:WEKA基础操作

数据挖掘开源软件:WEKA基础教程 本文档部分来自于网络,随着自己的深入学习,讲不断的修订和完善。 第一节   Weka简介: Weka是由新西兰怀卡托大学开发的智能分析系统(Waikato E...
  • u011067360
  • u011067360
  • 2014年03月09日 15:19
  • 3703

以什么姿势进入DataMining会少走弯路?

大数据时代早已经来临,很多年轻人急着闹着想要跻身于大数据行业,不免也有一些不得志的中年人。自然而然的会报各种培训班,理所当然认为付出总有一天会赚回来的。但却走了不少弯路,花了不少钱。倘若在我写的文章中...
  • jdbc
  • jdbc
  • 2016年05月09日 12:02
  • 1634

data mining:数据预处理

data mining:数据预处理
  • u013790563
  • u013790563
  • 2016年03月22日 13:41
  • 658

ros:global_planner 整体解析 解释了全局规划的多种实现原因(挺有用)

ROS: global_planner 整体解析        在目前的ROS版本中,机器人全局路径规划使用的是navfn包,这在move_base的默认参数中可以找到 base...
  • CWY_007
  • CWY_007
  • 2017年07月05日 17:29
  • 486

主成分分析PCA

华夏35度 Data Mining 主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。 ...
  • zkl99999
  • zkl99999
  • 2015年10月07日 22:16
  • 1324
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Data Mining for Global Change: Furthering Science, Knowledge
举报原因:
原因补充:

(最多只允许输入30个字)